Suppr超能文献

拟南芥TCP20连接生长调控与细胞分裂控制途径。

Arabidopsis TCP20 links regulation of growth and cell division control pathways.

作者信息

Li Chengxia, Potuschak Thomas, Colón-Carmona Adán, Gutiérrez Rodrigo A, Doerner Peter

机构信息

Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, EH9 3JR Edinburgh, Scotland.

出版信息

Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12978-83. doi: 10.1073/pnas.0504039102. Epub 2005 Aug 25.

Abstract

During postembryonic plant development, cell division is coupled to cell growth. There is a stringent requirement to couple these processes in shoot and root meristems. As cells pass through meristems, they transit through zones with high rates of cell growth and proliferation during organogenesis. This transition implies a need for coordinate regulation of genes underpinning these two fundamental cell functions. Here, we report a mechanism for coregulation of cell division control genes and cell growth effectors. We identified a GCCCR motif necessary and sufficient for high-level cyclin CYCB1;1 expression at G2/M. This motif is overrepresented in many ribosomal protein gene promoters and is required for high-level expression of the S27 and L24 ribosomal subunit genes we examined. p33(TCP20), encoded by the Arabidopsis TCP20 gene, binds to the GCCCR element in the promoters of cyclin CYCB1;1 and ribosomal protein genes in vitro and in vivo. We propose a model in which organ growth rates, and possibly shape in aerial organs, are regulated by the balance of positively and negatively acting teosinte-branched, cycloidea, PCNA factor (TCP) genes in the distal meristem boundary zone where cells become mitotically quiescent before expansion and differentiation.

摘要

在植物胚后发育过程中,细胞分裂与细胞生长相关联。在茎尖和根尖分生组织中,严格要求这两个过程相互协调。当细胞通过分生组织时,它们在器官发生过程中会经过细胞生长和增殖速率较高的区域。这种转变意味着需要对支撑这两种基本细胞功能的基因进行协调调控。在此,我们报道了一种细胞分裂控制基因和细胞生长效应因子共同调控的机制。我们鉴定出一个GCCCR基序,它对于细胞周期蛋白CYCB1;1在G2/M期的高水平表达是必需且充分的。这个基序在许多核糖体蛋白基因启动子中高度富集,并且是我们所检测的S27和L24核糖体亚基基因高水平表达所必需的。拟南芥TCP20基因编码的p33(TCP20)在体外和体内均能与细胞周期蛋白CYCB1;1和核糖体蛋白基因启动子中的GCCCR元件结合。我们提出了一个模型,即在远端分生组织边界区,细胞在扩展和分化之前进入有丝分裂静止期,器官生长速率以及可能地上器官的形状受正向和负向作用的玉米分枝、环化、增殖细胞核抗原因子(TCP)基因平衡的调控。

相似文献

1
Arabidopsis TCP20 links regulation of growth and cell division control pathways.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12978-83. doi: 10.1073/pnas.0504039102. Epub 2005 Aug 25.
2
Interacting TCP and NLP transcription factors control plant responses to nitrate availability.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2419-2424. doi: 10.1073/pnas.1615676114. Epub 2017 Feb 15.
4
The Arabidopsis locus RCB mediates upstream regulation of mitotic gene expression.
Plant Physiol. 2003 Dec;133(4):1862-72. doi: 10.1104/pp.103.027128.
5
TOPLESS mediates brassinosteroid control of shoot boundaries and root meristem development in .
Development. 2017 May 1;144(9):1619-1628. doi: 10.1242/dev.143214. Epub 2017 Mar 20.
6
Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation.
Plant Cell. 2004 Sep;16(9):2350-63. doi: 10.1105/tpc.104.023978. Epub 2004 Aug 12.
9
A genetic framework for the control of cell division and differentiation in the root meristem.
Science. 2008 Nov 28;322(5906):1380-4. doi: 10.1126/science.1164147.

引用本文的文献

1
Identification and expression responses of TCP gene family in under abiotic stress.
Front Plant Sci. 2025 Mar 6;16:1499244. doi: 10.3389/fpls.2025.1499244. eCollection 2025.
2
SWI/SNF-type complexes-transcription factor interplay: a key regulatory interaction.
Cell Mol Biol Lett. 2025 Mar 10;30(1):30. doi: 10.1186/s11658-025-00704-y.
3
TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat.
Nat Commun. 2025 Feb 16;16(1):1683. doi: 10.1038/s41467-025-57008-0.
4
5
Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in L.
Plants (Basel). 2024 Jul 10;13(14):1905. doi: 10.3390/plants13141905.
10
Study of Camellia sinensis diploid and triploid leaf development mechanism based on transcriptome and leaf characteristics.
PLoS One. 2023 Feb 17;18(2):e0275652. doi: 10.1371/journal.pone.0275652. eCollection 2023.

本文引用的文献

1
High efficiency transformation of cultured tobacco cells.
Plant Physiol. 1985 Oct;79(2):568-70. doi: 10.1104/pp.79.2.568.
3
Genome-wide gene expression in an Arabidopsis cell suspension.
Plant Mol Biol. 2003 Nov;53(4):423-42. doi: 10.1023/B:PLAN.0000019059.56489.ca.
4
In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis.
Plant Cell. 2004 Jan;16(1):74-87. doi: 10.1105/tpc.017962. Epub 2003 Dec 11.
5
Control of leaf morphogenesis by microRNAs.
Nature. 2003 Sep 18;425(6955):257-63. doi: 10.1038/nature01958. Epub 2003 Aug 20.
6
Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L.
J Exp Bot. 2003 Jun;54(387):1585-95. doi: 10.1093/jxb/erg166. Epub 2003 Apr 28.
8
Genetic control of surface curvature.
Science. 2003 Feb 28;299(5611):1404-7. doi: 10.1126/science.1079354.
9
The PEDANT genome database.
Nucleic Acids Res. 2003 Jan 1;31(1):207-11. doi: 10.1093/nar/gkg005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验