Suppr超能文献

一种在精细离散头部模型中精确求解脑电正向问题的计算高效方法。

A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model.

作者信息

Neilson Lora A, Kovalyov Mikhail, Koles Zoltan J

机构信息

Department of Electrical and Computer Engineering, University of Alberta, W2-106 ECERF, Edmonton, Alberta, Canada T6G 2V4.

出版信息

Clin Neurophysiol. 2005 Oct;116(10):2302-14. doi: 10.1016/j.clinph.2005.07.010.

Abstract

OBJECTIVE

Solution of the forward problem using realistic head models is necessary for accurate EEG source analysis. Realistic models are usually derived from volumetric magnetic resonance images that provide a voxel resolution of about 1 mm3. Electrical models could, therefore contain, for a normal adult head, over 4 million elements. Solution of the forward problem using models of this magnitude has so far been impractical due to issues of computation time and memory.

METHODS

A preconditioner is proposed for the conjugate-gradient method that enables the forward problem to be solved using head models of this magnitude. It is applied to the system matrix constructed from the head anatomy using finite differences. The preconditioner is not computed explicitly and so is very efficient in terms of memory utilization.

RESULTS

Using a spherical head model discretized into over 4 million volumes, we have been able to obtain accurate forward solutions in about 60 min on a 1 GHz Pentium III. L2 accuracy of the solutions was better than 2%.

CONCLUSIONS

Accurate solution of the forward problem in EEG in a finely discretized head model is practical in terms of computation time and memory.

SIGNIFICANCE

The results represent an important step in head modeling for EEG source analysis.

摘要

目的

使用逼真的头部模型求解正向问题对于准确的脑电图源分析是必要的。逼真的模型通常源自体积磁共振图像,其提供约1立方毫米的体素分辨率。因此,对于正常成人头部,电模型可能包含超过400万个单元。由于计算时间和内存问题,迄今为止,使用这种规模的模型求解正向问题是不切实际的。

方法

提出一种用于共轭梯度法的预处理器,它能够使用这种规模的头部模型求解正向问题。它应用于使用有限差分从头部解剖结构构建的系统矩阵。预处理器不进行显式计算,因此在内存利用方面非常高效。

结果

使用离散为超过400万个体积的球形头部模型,我们能够在1 GHz奔腾III处理器上约60分钟内获得准确的正向解。解的L2精度优于2%。

结论

在精细离散的头部模型中,就计算时间和内存而言,准确求解脑电图正向问题是可行的。

意义

这些结果代表了脑电图源分析头部建模中的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验