Suppr超能文献

滑行支原体的幽灵

Gliding ghosts of Mycoplasma mobile.

作者信息

Uenoyama Atsuko, Miyata Makoto

机构信息

Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.

出版信息

Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12754-8. doi: 10.1073/pnas.0506114102. Epub 2005 Aug 26.

Abstract

Several species of mycoplasmas glide on solid surfaces, in the direction of their membrane protrusion at a cell pole, by an unknown mechanism. Our recent studies on the fastest species, Mycoplasma mobile, suggested that the gliding machinery, localized at the base of the membrane protrusion (the "neck"), is composed of two huge proteins. This machinery forms spikes sticking out from the neck and propels the cell by alternately binding and unbinding the spikes to a solid surface. Here, to study the intracellular mechanisms for gliding, we established a permeabilized gliding ghost model, analogous to the "Triton model" of the eukaryotic axoneme. Treatment with Triton X-100 stopped the gliding and converted the cells to permeabilized "ghosts." When ATP was added exogenously, approximately 85% of the ghosts were reactivated, gliding at speeds similar to those of living cells. The reactivation activity and inhibition by various nucleotides and ATP analogs, as well as their kinetic parameters, showed that the machinery is driven by the hydrolysis of ATP to ADP plus phosphate, caused by an unknown ATPase.

摘要

几种支原体能够在固体表面沿着细胞膜在细胞极处的突出方向滑行,但其机制尚不清楚。我们最近对滑行速度最快的物种——运动支原体的研究表明,位于细胞膜突出部基部(“颈部”)的滑行机制由两种巨大的蛋白质组成。这种机制形成从颈部伸出的尖刺,并通过使尖刺与固体表面交替结合和解离来推动细胞。在此,为了研究滑行的细胞内机制,我们建立了一种通透化的滑行鬼模型,类似于真核生物轴丝的“Triton模型”。用Triton X-100处理会使滑行停止,并将细胞转化为通透化的“鬼细胞”。当外源添加ATP时,约85%的鬼细胞被重新激活,以与活细胞相似的速度滑行。各种核苷酸和ATP类似物的重新激活活性和抑制作用以及它们的动力学参数表明,该机制由一种未知的ATP酶催化ATP水解为ADP和磷酸所驱动。

相似文献

1
Gliding ghosts of Mycoplasma mobile.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12754-8. doi: 10.1073/pnas.0506114102. Epub 2005 Aug 26.
2
Unitary step of gliding machinery in Mycoplasma mobile.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8601-6. doi: 10.1073/pnas.1310355111. Epub 2014 May 27.
3
Gliding Direction of Mycoplasma mobile.
J Bacteriol. 2015 Oct 26;198(2):283-90. doi: 10.1128/JB.00499-15. Print 2016 Jan 15.
4
Unique centipede mechanism of Mycoplasma gliding.
Annu Rev Microbiol. 2010;64:519-37. doi: 10.1146/annurev.micro.112408.134116.
6
Linear motor driven-rotary motion of a membrane-permeabilized ghost in Mycoplasma mobile.
Sci Rep. 2018 Jul 31;8(1):11513. doi: 10.1038/s41598-018-29875-9.
7
Prospects for the gliding mechanism of Mycoplasma mobile.
Curr Opin Microbiol. 2016 Feb;29:15-21. doi: 10.1016/j.mib.2015.08.010. Epub 2015 Oct 21.

引用本文的文献

1
Gliding direction of correlates with the curved configuration of its cell shape.
Biophys Physicobiol. 2025 Feb 26;22(1):e220006. doi: 10.2142/biophysico.bppb-v22.0006. eCollection 2025.
2
Innovative Methodology for Antimicrobial Susceptibility Determination in Biofilms.
Microorganisms. 2024 Dec 20;12(12):2650. doi: 10.3390/microorganisms12122650.
3
Internal structure of gliding machinery analyzed by negative staining electron tomography.
Biophys Physicobiol. 2024 May 28;21(2):e210015. doi: 10.2142/biophysico.bppb-v21.0015. eCollection 2024.
5
A geometrical theory of gliding motility based on cell shape and surface flow.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2410708121. doi: 10.1073/pnas.2410708121. Epub 2024 Jul 19.
6
Detection of Steps and Rotation in the Gliding Motility of Mycoplasma mobile.
Methods Mol Biol. 2023;2646:327-336. doi: 10.1007/978-1-0716-3060-0_27.
7
Cell shape controls rheotaxis in small parasitic bacteria.
PLoS Pathog. 2022 Jul 14;18(7):e1010648. doi: 10.1371/journal.ppat.1010648. eCollection 2022 Jul.
8
High-speed Atomic Force Microscopy Observation of Internal Structure Movements in Living .
Bio Protoc. 2022 Mar 5;12(5):e4344. doi: 10.21769/BioProtoc.4344.
9
Gradual compaction of the central spindle decreases its dynamicity in PRC1 and EB1 gene-edited cells.
Life Sci Alliance. 2021 Sep 27;4(12). doi: 10.26508/lsa.202101222. Print 2021 Dec.
10
Prospects for the Mechanism of Swimming.
Front Microbiol. 2021 Aug 27;12:706426. doi: 10.3389/fmicb.2021.706426. eCollection 2021.

本文引用的文献

1
Sequence analysis of the gliding protein Gli349 in .
Biophysics (Nagoya-shi). 2005 May 25;1:33-43. doi: 10.2142/biophysics.1.33. eCollection 2005.
2
4
Living microtransporter by uni-directional gliding of Mycoplasma along microtracks.
Biochem Biophys Res Commun. 2005 May 27;331(1):318-24. doi: 10.1016/j.bbrc.2005.03.168.
7
Cell surface differentiation of Mycoplasma mobile visualized by surface protein localization.
Microbiology (Reading). 2004 Dec;150(Pt 12):4001-8. doi: 10.1099/mic.0.27436-0.
8
The complete genome and proteome of Mycoplasma mobile.
Genome Res. 2004 Aug;14(8):1447-61. doi: 10.1101/gr.2674004.
10
Energetics of gliding motility in Mycoplasma mobile.
J Bacteriol. 2004 Jul;186(13):4254-61. doi: 10.1128/JB.186.13.4254-4261.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验