Suppr超能文献

使用稀疏贝叶斯方法鉴定动态质量作用生化反应网络。

Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods.

机构信息

Department of Computer Science, University of California Santa Barbara, Santa Barbara, California, United States of America.

Department of Information Technology, Uppsala University, Uppsala, Sweden.

出版信息

PLoS Comput Biol. 2022 Jan 31;18(1):e1009830. doi: 10.1371/journal.pcbi.1009830. eCollection 2022 Jan.

Abstract

Identifying the reactions that govern a dynamical biological system is a crucial but challenging task in systems biology. In this work, we present a data-driven method to infer the underlying biochemical reaction system governing a set of observed species concentrations over time. We formulate the problem as a regression over a large, but limited, mass-action constrained reaction space and utilize sparse Bayesian inference via the regularized horseshoe prior to produce robust, interpretable biochemical reaction networks, along with uncertainty estimates of parameters. The resulting systems of chemical reactions and posteriors inform the biologist of potentially several reaction systems that can be further investigated. We demonstrate the method on two examples of recovering the dynamics of an unknown reaction system, to illustrate the benefits of improved accuracy and information obtained.

摘要

确定控制动力生物学系统的反应是系统生物学中一项至关重要但具有挑战性的任务。在这项工作中,我们提出了一种数据驱动的方法,用于推断随时间观测到的物种浓度集所遵循的潜在生化反应系统。我们将问题表述为在一个大但有限的受质量作用限制的反应空间上进行回归,并利用正则化马蹄形先验进行稀疏贝叶斯推断,以生成稳健、可解释的生化反应网络,并对参数进行不确定性估计。由此产生的化学反应系统和后验为生物学家提供了可能的几个反应系统的信息,这些系统可以进一步研究。我们在两个示例中演示了恢复未知反应系统动态的方法,以说明提高准确性和获得信息的好处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d11e/8830701/4da7489200cf/pcbi.1009830.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验