Suppr超能文献

用于随机动力学生化网络模型的贝叶斯序贯推理

Bayesian sequential inference for stochastic kinetic biochemical network models.

作者信息

Golightly Andrew, Wilkinson Darren J

机构信息

School of Mathematics and Statistics, University of Newcastle upon Tyne, NE1 7RU, UK.

出版信息

J Comput Biol. 2006 Apr;13(3):838-51. doi: 10.1089/cmb.2006.13.838.

Abstract

As postgenomic biology becomes more predictive, the ability to infer rate parameters of genetic and biochemical networks will become increasingly important. In this paper, we explore the Bayesian estimation of stochastic kinetic rate constants governing dynamic models of intracellular processes. The underlying model is replaced by a diffusion approximation where a noise term represents intrinsic stochastic behavior and the model is identified using discrete-time (and often incomplete) data that is subject to measurement error. Sequential MCMC methods are then used to sample the model parameters on-line in several data-poor contexts. The methodology is illustrated by applying it to the estimation of parameters in a simple prokaryotic auto-regulatory gene network.

摘要

随着后基因组生物学变得更具预测性,推断遗传和生化网络速率参数的能力将变得越来越重要。在本文中,我们探讨了用于控制细胞内过程动态模型的随机动力学速率常数的贝叶斯估计。基础模型被扩散近似所取代,其中噪声项代表内在随机行为,并且该模型使用受测量误差影响的离散时间(且通常不完整)数据来识别。然后,在几个数据匮乏的情况下,使用顺序马尔可夫链蒙特卡罗方法在线对模型参数进行采样。通过将该方法应用于一个简单的原核生物自调控基因网络中的参数估计来说明该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验