Sherlock Chris
Department of Mathematics and Statistics, Lancaster University, Lancaster, UK.
Comput Stat. 2021;36(4):2863-2887. doi: 10.1007/s00180-021-01102-6. Epub 2021 Apr 19.
Given noisy, partial observations of a time-homogeneous, finite-statespace Markov chain, conceptually simple, direct statistical inference is available, in theory, via its rate matrix, or infinitesimal generator, , since is the transition matrix over time . However, perhaps because of inadequate tools for matrix exponentiation in programming languages commonly used amongst statisticians or a belief that the necessary calculations are prohibitively expensive, statistical inference for continuous-time Markov chains with a large but finite state space is typically conducted via particle MCMC or other relatively complex inference schemes. When, as in many applications arises from a reaction network, it is usually sparse. We describe variations on known algorithms which allow fast, robust and accurate evaluation of the product of a non-negative vector with the exponential of a large, sparse rate matrix. Our implementation uses relatively recently developed, efficient, linear algebra tools that take advantage of such sparsity. We demonstrate the straightforward statistical application of the key algorithm on a model for the mixing of two alleles in a population and on the Susceptible-Infectious-Removed epidemic model.
对于一个时间齐次、有限状态空间的马尔可夫链,给定有噪声的部分观测值,从理论上讲,通过其速率矩阵或无穷小生成元 可以进行概念上简单的直接统计推断,因为 是随时间变化的转移矩阵。然而,也许是因为统计学家常用的编程语言中矩阵求幂的工具不足,或者认为必要的计算成本过高,对于具有大但有限状态空间的连续时间马尔可夫链,统计推断通常通过粒子马尔可夫链蒙特卡罗方法或其他相对复杂的推断方案进行。当 如在许多应用中那样源于反应网络时,它通常是稀疏的。我们描述了已知算法的变体,这些变体允许快速、稳健且准确地评估非负向量与大型稀疏速率矩阵指数的乘积。我们的实现使用了相对较新开发的、高效的线性代数工具,这些工具利用了这种稀疏性。我们在一个群体中两个等位基因混合的模型以及易感 - 感染 - 康复传染病模型上展示了关键算法的直接统计应用。