Chemla Yann R, Aathavan K, Michaelis Jens, Grimes Shelley, Jardine Paul J, Anderson Dwight L, Bustamante Carlos
Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA.
Cell. 2005 Sep 9;122(5):683-92. doi: 10.1016/j.cell.2005.06.024.
A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the single-molecule level, the mechanism of force generation in this motor. We determine the kinetic parameters of the packaging motor and their dependence on external load to show that DNA translocation does not occur during ATP binding but is likely triggered by phosphate release. We also show that the motor subunits act in a coordinated, successive fashion with high processivity. Finally, we propose a minimal mechanochemical cycle of this DNA-translocating ATPase that rationalizes all of our findings.
一大类多聚体ATP酶参与了诸如细胞分裂、染色体分离、DNA重组、链分离、接合以及病毒基因组包装等多种不同的任务。其中一个这样的系统是枯草芽孢杆菌噬菌体phi 29 DNA包装马达,它产生巨大的力将其基因组压缩到一个小的蛋白质衣壳中。在这里,我们使用光镊在单分子水平上研究这个马达中力产生的机制。我们确定了包装马达的动力学参数及其对外部负载的依赖性,以表明DNA转位在ATP结合期间不会发生,而是可能由磷酸释放触发。我们还表明,马达亚基以协调、连续的方式起作用,具有很高的持续性。最后,我们提出了这种DNA转运ATP酶的一个最小化机械化学循环,该循环使我们所有的发现都合理化。