Suppr超能文献

DNA折纸力传感器的协同控制

Cooperative control of a DNA origami force sensor.

作者信息

Robbins Ariel, Hildebolt Hazen, Neuhoff Michael, Beshay Peter, Winter Jessica O, Castro Carlos E, Bundschuh Ralf, Poirier Michael G

机构信息

Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.

Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Sci Rep. 2024 Feb 19;14(1):4132. doi: 10.1038/s41598-024-53841-3.

Abstract

Biomolecular systems are dependent on a complex interplay of forces. Modern force spectroscopy techniques provide means of interrogating these forces, but they are not optimized for studies in constrained environments as they require attachment to micron-scale probes such as beads or cantilevers. Nanomechanical devices are a promising alternative, but this requires versatile designs that can be tuned to respond to a wide range of forces. We investigate the properties of a nanoscale force sensitive DNA origami device which is highly customizable in geometry, functionalization, and mechanical properties. The device, referred to as the NanoDyn, has a binary (open or closed) response to an applied force by undergoing a reversible structural transition. The transition force is tuned with minor alterations of 1 to 3 DNA oligonucleotides and spans tens of picoNewtons (pN). The DNA oligonucleotide design parameters also strongly influence the efficiency of resetting the initial state, with higher stability devices (≳10 pN) resetting more reliably during repeated force-loading cycles. Finally, we show the opening force is tunable in real time by adding a single DNA oligonucleotide. These results establish the potential of the NanoDyn as a versatile force sensor and provide fundamental insights into how design parameters modulate mechanical and dynamic properties.

摘要

生物分子系统依赖于各种力的复杂相互作用。现代力谱技术提供了探究这些力的方法,但由于它们需要附着在微米级的探针(如珠子或悬臂)上,因此并未针对受限环境下的研究进行优化。纳米机械设备是一种很有前途的替代方案,但这需要能够进行多种调整以响应广泛力的通用设计。我们研究了一种纳米级力敏DNA折纸装置的特性,该装置在几何形状、功能化和机械性能方面具有高度可定制性。这种被称为NanoDyn的装置,通过经历可逆的结构转变,对施加的力具有二元(打开或关闭)响应。通过对1至3条DNA寡核苷酸进行微小改变来调节转变力,其范围跨越数十皮牛顿(pN)。DNA寡核苷酸的设计参数也强烈影响重置初始状态的效率,稳定性较高的装置(≳10 pN)在重复的力加载循环中重置得更可靠。最后,我们表明通过添加一条DNA寡核苷酸可以实时调节打开力。这些结果确立了NanoDyn作为通用力传感器的潜力,并为设计参数如何调节机械和动态特性提供了基本见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验