Rondeau Virginie, Gonzalez Juan R
INSERM EMI 0338 (Biostatistic), Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
Comput Methods Programs Biomed. 2005 Nov;80(2):154-64. doi: 10.1016/j.cmpb.2005.06.010. Epub 2005 Sep 6.
Correlated survival outcomes occur quite frequently in the biomedical research. Available software is limited, particularly if we wish to obtain smoothed estimate of the baseline hazard function in the context of random effects model for correlated data. The main objective of this paper is to describe an R package called frailtypack that can be used for estimating the parameters in a shared gamma frailty model with possibly right-censored, left-truncated stratified survival data using penalized likelihood estimation. Time-dependent structure for the explanatory variables and/or extension of the Cox regression model to recurrent events are also allowed. This program can also be used simply to obtain directly a smooth estimate of the baseline hazard function. To illustrate the program we used two data sets, one with clustered survival times, the other one with recurrent events, i.e., the rehospitalizations of patients diagnosed with colorectal cancer. We show how to fit the model with recurrent events and time-dependent covariates using Andersen-Gill approach.
相关生存结果在生物医学研究中相当常见。可用的软件有限,特别是当我们希望在相关数据的随机效应模型背景下获得基线危险函数的平滑估计时。本文的主要目标是描述一个名为frailtypack的R包,它可用于使用惩罚似然估计,对可能存在右删失、左截断分层生存数据的共享伽马脆弱模型中的参数进行估计。还允许解释变量的时间依存结构和/或将Cox回归模型扩展到复发事件。该程序也可简单地直接用于获得基线危险函数的平滑估计。为了说明该程序,我们使用了两个数据集,一个具有聚类生存时间,另一个具有复发事件,即被诊断患有结直肠癌患者的再次住院情况。我们展示了如何使用Andersen-Gill方法对具有复发事件和时间依存协变量的模型进行拟合。