Suppr超能文献

Bicarbonate-dependent changes of intracellular sodium and pH in identified leech glial cells.

作者信息

Deitmer J W

机构信息

Abteilung für Allgemeine Zoologie, Universität Kaiserslautern, Federal Republic of Germany.

出版信息

Pflugers Arch. 1992 Apr;420(5-6):584-9. doi: 10.1007/BF00374637.

Abstract

A new triple-barrelled ion-sensitive microelectrode was used to investigate the importance of bicarbonate for the regulation of intracellular Na+ and pH (Nai and pHi, respectively) of neuropile glial cells in the central nervous system of the leech Hirudo medicinalis. Addition of CO2/HCO3- produced an increase of the Nai activity and an intracellular alkalinization, indicating bicarbonate accumulation in the glial cells. Changes of external pH (from 7.4 to 7.0 and 7.8) produced large and rapid shifts of pHi and Nai and of the membrane potential in the presence, but not in the absence, of bicarbonate. Thus, acid/base transport and Na+ movements across the glial membrane into and out of the cells were accelerated severalfold in CO2/HCO3(-)-buffered saline as compared to a CO2/HCO3(-)-free, HEPES-buffered saline. The results suggest that the electrogenic, reversible, cotransport of Na+ and HCO3- in the glial cell membrane [3,9] can produce significant changes in intraglial pH and Na activity, and can carry a significant fraction of the total Na+ flux across the cell membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验