Suppr超能文献

微生物铁(III)还原对硝酸根和亚硝酸根还原的抑制作用:亚硝酸根与细胞表面结合的亚铁离子之间反应的证据。

Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+.

作者信息

Coby Aaron J, Picardal Flynn W

机构信息

Environmental Science Research Center, School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA.

出版信息

Appl Environ Microbiol. 2005 Sep;71(9):5267-74. doi: 10.1128/AEM.71.9.5267-5274.2005.

Abstract

A recent study (D. C. Cooper, F. W. Picardal, A. Schimmelmann, and A. J. Coby, Appl. Environ. Microbiol. 69:3517-3525, 2003) has shown that NO(3)(-) and NO(2)(-) (NO(x)(-)) reduction by Shewanella putrefaciens 200 is inhibited in the presence of goethite. The hypothetical mechanism offered to explain this finding involved the formation of a Fe(III) (hydr)oxide coating on the cell via the surface-catalyzed, abiotic reaction between Fe(2+) and NO(2)(-). This coating could then inhibit reduction of NO(x)(-) by physically blocking transport into the cell. Although the data in the previous study were consistent with such an explanation, the hypothesis was largely speculative. In the current work, this hypothesis was tested and its environmental significance explored through a number of experiments. The inhibition of approximately 3 mM NO(3)(-) reduction was observed during reduction of a variety of Fe(III) (hydr)oxides, including goethite, hematite, and an iron-bearing, natural sediment. Inhibition of oxygen and fumarate reduction was observed following treatment of cells with Fe(2+) and NO(2)(-), demonstrating that utilization of other soluble electron acceptors could also be inhibited. Previous adsorption of Fe(2+) onto Paracoccus denitrificans inhibited NO(x)(-) reduction, showing that Fe(II) can reduce rates of soluble electron acceptor utilization by non-iron-reducing bacteria. NO(2)(-) was chemically reduced to N(2)O by goethite or cell-sorbed Fe(2+), but not at appreciable rates by aqueous Fe(2+). Transmission and scanning electron microscopy showed an electron-dense, Fe-enriched coating on cells treated with Fe(2+) and NO(2)(-). The formation and effects of such coatings underscore the complexity of the biogeochemical reactions that occur in the subsurface.

摘要

最近的一项研究(D. C. 库珀、F. W. 皮卡达尔、A. 施密尔曼和A. J. 科比,《应用与环境微生物学》69:3517 - 3525,2003年)表明,在针铁矿存在的情况下,腐败希瓦氏菌200对NO₃⁻和NO₂⁻(NOₓ⁻)的还原作用受到抑制。为解释这一发现所提出的假设机制涉及通过Fe²⁺与NO₂⁻之间的表面催化非生物反应在细胞表面形成Fe(III)(氢)氧化物涂层。然后这种涂层可以通过物理阻断向细胞内的转运来抑制NOₓ⁻的还原。尽管先前研究中的数据与这种解释一致,但该假设在很大程度上是推测性的。在当前的工作中,通过一系列实验对该假设进行了检验,并探讨了其环境意义。在还原包括针铁矿、赤铁矿和含铁天然沉积物在内的多种Fe(III)(氢)氧化物的过程中,观察到约3 mM NO₃⁻还原受到抑制。在用Fe²⁺和NO₂⁻处理细胞后,观察到氧气和富马酸还原受到抑制,这表明对其他可溶性电子受体的利用也可能受到抑制。先前Fe²⁺吸附到反硝化副球菌上会抑制NOₓ⁻还原,表明Fe(II)可以降低非铁还原细菌对可溶性电子受体的利用速率。NO₂⁻被针铁矿或细胞吸附的Fe²⁺化学还原为N₂O,但水溶液中的Fe²⁺还原速率不明显。透射电子显微镜和扫描电子显微镜显示,在用Fe²⁺和NO₂⁻处理的细胞上有电子致密、富含Fe的涂层。这种涂层的形成及其影响突出了地下发生的生物地球化学反应的复杂性。

相似文献

2
Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200.
Appl Environ Microbiol. 2003 Jun;69(6):3517-25. doi: 10.1128/AEM.69.6.3517-3525.2003.
3
Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200.
J Bacteriol. 1992 Mar;174(6):1891-6. doi: 10.1128/jb.174.6.1891-1896.1992.
4
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.
7
Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds.
Environ Sci Technol. 2001 Apr 15;35(8):1644-50. doi: 10.1021/es0016598.
8
Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction.
Environ Sci Technol. 2006 Jun 15;40(12):3813-8. doi: 10.1021/es0525197.
9
Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.
Appl Environ Microbiol. 2005 Nov;71(11):7172-7. doi: 10.1128/AEM.71.11.7172-7177.2005.

引用本文的文献

2
Recent progress in microbial production and consumption of nitrous oxide in agricultural soils.
World J Microbiol Biotechnol. 2025 Jun 27;41(7):235. doi: 10.1007/s11274-025-04464-x.
3
Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by MR-1.
Microorganisms. 2024 Nov 29;12(12):2454. doi: 10.3390/microorganisms12122454.
5
sp. T2.3D-1.1 a Novel Microorganism Sustaining the Iron Cycle in the Deep Subsurface of the Iberian Pyrite Belt.
Microorganisms. 2022 Aug 6;10(8):1585. doi: 10.3390/microorganisms10081585.
6
Metabolic Inactivity and Re-awakening of a Nitrate Reduction Dependent Iron(II)-Oxidizing Bacterium .
Front Microbiol. 2019 Jul 3;10:1494. doi: 10.3389/fmicb.2019.01494. eCollection 2019.
7
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.
8
Frutexites-like structures formed by iron oxidizing biofilms in the continental subsurface (Äspö Hard Rock Laboratory, Sweden).
PLoS One. 2017 May 19;12(5):e0177542. doi: 10.1371/journal.pone.0177542. eCollection 2017.
9
Nutrients removal and nitrous oxide emission during simultaneous nitrification, denitrification, and phosphorus removal process: effect of iron.
Environ Sci Pollut Res Int. 2016 Aug;23(15):15657-64. doi: 10.1007/s11356-016-6758-2. Epub 2016 May 2.
10
Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO₂ scrubbing liquor.
World J Microbiol Biotechnol. 2015 Mar;31(3):527-34. doi: 10.1007/s11274-015-1813-6. Epub 2015 Feb 4.

本文引用的文献

1
Enhanced anaerobic biotransformation of carbon tetrachloride in the presence of reduced iron oxides.
Environ Toxicol Chem. 1999 Oct;18(10):2142-2150. doi: 10.1002/etc.5620181005.
2
Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
Biotechnol Bioeng. 1988 Oct 20;32(9):1081-96. doi: 10.1002/bit.260320902.
3
Greenhouse Effects due to Man-Mad Perturbations of Trace Gases.
Science. 1976 Nov 12;194(4266):685-90. doi: 10.1126/science.194.4266.685.
4
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.
Appl Environ Microbiol. 1996 Apr;62(4):1458-60. doi: 10.1128/aem.62.4.1458-1460.1996.
5
Organic matter mineralization with reduction of ferric iron in anaerobic sediments.
Appl Environ Microbiol. 1986 Apr;51(4):683-9. doi: 10.1128/aem.51.4.683-689.1986.
6
Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate.
Appl Environ Microbiol. 1982 Feb;43(2):319-24. doi: 10.1128/aem.43.2.319-324.1982.
7
Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state.
Appl Environ Microbiol. 2004 Jul;70(7):4230-41. doi: 10.1128/AEM.70.7.4230-4241.2004.
8
Microbial reduction of metals and radionuclides.
FEMS Microbiol Rev. 2003 Jun;27(2-3):411-25. doi: 10.1016/S0168-6445(03)00044-5.
9
Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200.
Appl Environ Microbiol. 2003 Jun;69(6):3517-25. doi: 10.1128/AEM.69.6.3517-3525.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验