Lynd Lee R, van Zyl Willem H, McBride John E, Laser Mark
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA.
Curr Opin Biotechnol. 2005 Oct;16(5):577-83. doi: 10.1016/j.copbio.2005.08.009.
Biologically mediated processes seem promising for energy conversion, in particular for the conversion of lignocellulosic biomass into fuels. Although processes featuring a step dedicated to the production of cellulase enzymes have been the focus of most research efforts to date, consolidated bioprocessing (CBP)--featuring cellulase production, cellulose hydrolysis and fermentation in one step--is an alternative approach with outstanding potential. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring cellulolytic microorganisms to improve product-related properties, such as yield and titer, and engineering non-cellulolytic organisms that exhibit high product yields and titers to express a heterologous cellulase system enabling cellulose utilization. Recent studies of the fundamental principles of microbial cellulose utilization support the feasibility of CBP.
生物介导的过程在能量转换方面似乎很有前景,特别是将木质纤维素生物质转化为燃料。尽管迄今为止,大多数研究工作都集中在具有专门生产纤维素酶步骤的过程上,但整合生物加工(CBP)——即在一个步骤中进行纤维素酶生产、纤维素水解和发酵——是一种具有巨大潜力的替代方法。通过两种策略在开发能够进行CBP的微生物方面取得了进展:对天然存在的纤维素分解微生物进行工程改造,以改善与产品相关的特性,如产量和滴度;对具有高产品产量和滴度的非纤维素分解生物进行工程改造,使其表达能够利用纤维素的异源纤维素酶系统。最近对微生物纤维素利用基本原理的研究支持了CBP的可行性。