Suppr超能文献

全球细胞代谢重编程使谷氨酸棒杆菌适应高效非天然木糖利用。

Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization.

机构信息

Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin Universitygrid.33763.32, Tianjin, China.

Frontier Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin Universitygrid.33763.32, Tianjin, China.

出版信息

Appl Environ Microbiol. 2022 Dec 13;88(23):e0151822. doi: 10.1128/aem.01518-22. Epub 2022 Nov 16.

Abstract

Xylose, the major component of lignocellulosic biomass, cannot be naturally or efficiently utilized by most microorganisms. Xylose (co)utilization is considered a cornerstone of efficient lignocellulose-based biomanufacturing. We evolved a rapidly xylose-utilizing strain, Cev2-18-5, which showed the highest reported specific growth rate (0.357 h) on xylose among plasmid-free Corynebacterium glutamicum strains. A genetically clear chassis strain, CGS15, was correspondingly reconstructed with an efficient glucose-xylose coutilization performance based on comparative genomic analysis and mutation reconstruction. With the introduction of a succinate-producing plasmid, the resulting strain, CGS15-SA1, can efficiently produce 97.1 g/L of succinate with an average productivity of 8.09 g/L/h by simultaneously utilizing glucose and xylose from corn stalk hydrolysate. We further revealed a novel xylose regulatory mechanism mediated by the endogenous transcription factor IpsA with global regulatory effects on C. glutamicum. A synergistic effect on carbon metabolism and energy supply, motivated by three genomic mutations (-, -, and ), was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. Overall, this work not only provides promising C. glutamicum chassis strains for a lignocellulosic biorefinery but also enriches the understanding of the xylose regulatory mechanism. A novel xylose regulatory mechanism mediated by the transcription factor IpsA was revealed. A synergistic effect on carbon metabolism and energy supply was found to endow C. glutamicum with the efficient xylose utilization and rapid growth phenotype. The new xylose regulatory mechanism enriches the understanding of nonnatural substrate metabolism and encourages exploration new engineering targets for rapid xylose utilization. This work also provides a paradigm to understand and engineer the metabolism of nonnatural renewable substrates for sustainable biomanufacturing.

摘要

木糖是木质纤维素生物质的主要成分,大多数微生物无法自然或高效地利用它。木糖(共)利用被认为是高效木质纤维素生物制造的基石。我们进化出了一种快速利用木糖的菌株 Cev2-18-5,它在无质粒谷氨酸棒杆菌菌株中显示出最高的报道比生长速率(0.357 h)。基于比较基因组分析和突变重建,相应地构建了一种遗传清晰的底盘菌株 CGS15,具有高效的葡萄糖-木糖共利用性能。通过引入琥珀酸产生质粒,所得菌株 CGS15-SA1 可以通过同时利用玉米秸秆水解物中的葡萄糖和木糖,高效生产 97.1 g/L 的琥珀酸,平均产率为 8.09 g/L/h。我们进一步揭示了一种由内源性转录因子 IpsA 介导的新型木糖调控机制,对谷氨酸棒杆菌具有全局调控作用。通过三个基因组突变(-、-和)发现,一种对碳代谢和能量供应的协同作用,使谷氨酸棒杆菌具有高效利用木糖和快速生长的表型。总的来说,这项工作不仅为木质纤维素生物炼制提供了有前途的谷氨酸棒杆菌底盘菌株,而且丰富了对木糖调控机制的理解。揭示了一种由转录因子 IpsA 介导的新型木糖调控机制。通过三个基因组突变(-、-和)发现,一种对碳代谢和能量供应的协同作用,使谷氨酸棒杆菌具有高效利用木糖和快速生长的表型。新的木糖调控机制丰富了对非天然底物代谢的理解,并鼓励探索快速利用木糖的新工程目标。这项工作还为理解和工程化非天然可再生底物的代谢提供了一个范例,以实现可持续的生物制造。

相似文献

1
Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization.
Appl Environ Microbiol. 2022 Dec 13;88(23):e0151822. doi: 10.1128/aem.01518-22. Epub 2022 Nov 16.
2
Metabolic engineering of for efficient production of succinate from lignocellulosic hydrolysate.
Biotechnol Biofuels. 2018 Apr 4;11:95. doi: 10.1186/s13068-018-1094-z. eCollection 2018.
3
Engineering carbon source division of labor for efficient α-carotene production in Corynebacterium glutamicum.
Metab Eng. 2024 Jul;84:117-127. doi: 10.1016/j.ymben.2024.06.008. Epub 2024 Jun 18.
6
Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates.
J Biotechnol. 2014 Dec 20;192 Pt A:156-60. doi: 10.1016/j.jbiotec.2014.09.026. Epub 2014 Oct 7.
9
Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
Metab Eng. 2017 Jan;39:151-158. doi: 10.1016/j.ymben.2016.11.009. Epub 2016 Dec 3.
10
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane.
Biotechnol J. 2013 May;8(5):557-70. doi: 10.1002/biot.201200367. Epub 2013 Apr 16.

引用本文的文献

1
Single Mutation in in -Deficient Enables Growth Boost in Xylose-Containing Media.
Microorganisms. 2025 Jul 8;13(7):1606. doi: 10.3390/microorganisms13071606.
2
Construction of a genome-engineered stable 5-aminolevulinic acid producing by increasing succinyl-CoA supply.
Synth Syst Biotechnol. 2025 May 30;10(3):1070-1076. doi: 10.1016/j.synbio.2025.05.013. eCollection 2025 Sep.
4
Engineering for the efficient production of 3-hydroxypropionic acid from glucose via the β-alanine pathway.
Synth Syst Biotechnol. 2024 Jun 13;9(4):752-758. doi: 10.1016/j.synbio.2024.06.003. eCollection 2024 Dec.
5
Multi-modular metabolic engineering of heme synthesis in .
Synth Syst Biotechnol. 2024 Mar 6;9(2):285-293. doi: 10.1016/j.synbio.2024.02.008. eCollection 2024 Jun.
6
Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate.
Biotechnol Biofuels Bioprod. 2023 Jul 18;16(1):116. doi: 10.1186/s13068-023-02367-3.

本文引用的文献

2
TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.
Mol Plant. 2020 Aug 3;13(8):1194-1202. doi: 10.1016/j.molp.2020.06.009. Epub 2020 Jun 23.
3
Engineering Prokaryotic Transcriptional Activator XylR as a Xylose-Inducible Biosensor for Transcription Activation in Yeast.
ACS Synth Biol. 2020 May 15;9(5):1022-1029. doi: 10.1021/acssynbio.0c00122. Epub 2020 Apr 17.
4
Growth of E. coli on formate and methanol via the reductive glycine pathway.
Nat Chem Biol. 2020 May;16(5):538-545. doi: 10.1038/s41589-020-0473-5. Epub 2020 Feb 10.
7
Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
Bioresour Technol. 2019 Jul;284:204-213. doi: 10.1016/j.biortech.2019.03.122. Epub 2019 Mar 25.
8
Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.
Bioresour Technol. 2019 Jun;281:135-142. doi: 10.1016/j.biortech.2019.02.084. Epub 2019 Feb 19.
9
Harnessing xylose pathways for biofuels production.
Curr Opin Biotechnol. 2019 Jun;57:56-65. doi: 10.1016/j.copbio.2019.01.006. Epub 2019 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验