文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过游戏化用户训练探索人机协作:一项关于协同抬举的用户研究

Exploring human-robot cooperation with gamified user training: a user study on cooperative lifting.

作者信息

Venås Gizem Ateş, Stølen Martin Fodstad, Kyrkjebø Erik

机构信息

Department of Computer Science, Electrical Engineering and Mathematical Sciences, Førde, Norway.

出版信息

Front Robot AI. 2024 Jan 12;10:1290104. doi: 10.3389/frobt.2023.1290104. eCollection 2023.


DOI:10.3389/frobt.2023.1290104
PMID:38283803
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10811071/
Abstract

Human-robot cooperation (HRC) is becoming increasingly relevant with the surge in collaborative robots (cobots) for industrial applications. Examples of humans and robots cooperating actively on the same workpiece can be found in research labs around the world, but industrial applications are still mostly limited to robots and humans taking turns. In this paper, we use a cooperative lifting task (co-lift) as a case study to explore how well this task can be learned within a limited time, and how background factors of users may impact learning. The experimental study included 32 healthy adults from 20 to 54 years who performed a co-lift with a collaborative robot. The physical setup is designed as a gamified user training system as research has validated that gamification is an effective methodology for user training. Human motions and gestures were measured using Inertial Measurement Unit (IMU) sensors and used to interact with the robot across three role distributions: human as the leader, robot as the leader, and shared leadership. We find that regardless of age, gender, job category, gaming background, and familiarity with robots, the learning curve of all users showed a satisfactory progression and that all users could achieve successful cooperation with the robot on the co-lift task after seven or fewer trials. The data indicates that some of the background factors of the users such as occupation, past gaming habits, , may affect learning outcomes, which will be explored further in future experiments. Overall, the results indicate that the potential of the adoption of HRC in the industry is promising for a diverse set of users after a relatively short training process.

摘要

随着用于工业应用的协作机器人(cobots)的激增,人机协作(HRC)变得越来越重要。在世界各地的研究实验室中,可以找到人类和机器人在同一工件上积极协作的例子,但工业应用仍然大多局限于机器人和人类轮流作业。在本文中,我们以协同提升任务(co-lift)为例,探讨在有限时间内该任务的学习效果如何,以及用户的背景因素可能如何影响学习。实验研究包括32名年龄在20至54岁之间的健康成年人,他们与一台协作机器人进行了协同提升任务。物理设置被设计成一个游戏化的用户培训系统,因为研究已经证实游戏化是一种有效的用户培训方法。使用惯性测量单元(IMU)传感器测量人类的动作和手势,并用于在三种角色分配下与机器人进行交互:人类作为领导者、机器人作为领导者以及共享领导权。我们发现,无论年龄、性别、工作类别、游戏背景以及对机器人的熟悉程度如何,所有用户的学习曲线都呈现出令人满意的进展,并且所有用户在七次或更少的试验后都能在协同提升任务中与机器人成功合作。数据表明,用户的一些背景因素,如职业、过去的游戏习惯等,可能会影响学习成果,这将在未来的实验中进一步探讨。总体而言,结果表明,经过相对较短的培训过程后,HRC在工业中的应用潜力对于各种各样的用户来说是有前景的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/6cca1fa4f6ae/frobt-10-1290104-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/9ec3209bbc3d/frobt-10-1290104-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/a58c6a18553b/frobt-10-1290104-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/508f389f55a4/frobt-10-1290104-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/3a378b8190c4/frobt-10-1290104-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/e8cb102dce8f/frobt-10-1290104-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/d5c36484d75a/frobt-10-1290104-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/c44aa0b4b8aa/frobt-10-1290104-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/9b49a4d42a13/frobt-10-1290104-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/355b62a5d734/frobt-10-1290104-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/16aa8d187514/frobt-10-1290104-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/e130629943fb/frobt-10-1290104-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/c7d2adb45249/frobt-10-1290104-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/6cca1fa4f6ae/frobt-10-1290104-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/9ec3209bbc3d/frobt-10-1290104-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/a58c6a18553b/frobt-10-1290104-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/508f389f55a4/frobt-10-1290104-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/3a378b8190c4/frobt-10-1290104-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/e8cb102dce8f/frobt-10-1290104-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/d5c36484d75a/frobt-10-1290104-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/c44aa0b4b8aa/frobt-10-1290104-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/9b49a4d42a13/frobt-10-1290104-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/355b62a5d734/frobt-10-1290104-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/16aa8d187514/frobt-10-1290104-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/e130629943fb/frobt-10-1290104-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/c7d2adb45249/frobt-10-1290104-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a3d/10811071/6cca1fa4f6ae/frobt-10-1290104-g013.jpg

相似文献

[1]
Exploring human-robot cooperation with gamified user training: a user study on cooperative lifting.

Front Robot AI. 2024-1-12

[2]
Collaborating eye to eye: Effects of workplace design on the perception of dominance of collaboration robots.

Front Robot AI. 2022-9-27

[3]
Effects of Prior Robot Experience, Speed, and Proximity on Psychosocial Reactions to a Soft Growing Robot.

IISE Trans Occup Ergon Hum Factors. 2024

[4]
Physiological Indicators of Fluency and Engagement during Sequential and Simultaneous Modes of Human-Robot Collaboration.

IISE Trans Occup Ergon Hum Factors. 2024

[5]
Imposing Motion Variability for Ergonomic Human-Robot Collaboration.

IISE Trans Occup Ergon Hum Factors. 2024

[6]
A Review on Human Comfort Factors, Measurements, and Improvements in Human-Robot Collaboration.

Sensors (Basel). 2022-9-30

[7]
Teleoperator-Robot-Human Interaction in Manufacturing: Perspectives from Industry, Robot Manufacturers, and Researchers.

IISE Trans Occup Ergon Hum Factors. 2024

[8]
Deep Learning Framework for Controlling Work Sequence in Collaborative Human-Robot Assembly Processes.

Sensors (Basel). 2023-1-3

[9]
What about the human in human robot collaboration?

Ergonomics. 2022-5

[10]
Curricula for teaching end-users to kinesthetically program collaborative robots.

PLoS One. 2023

本文引用的文献

[1]
Robotic Surgery: The Impact of Simulation and Other Innovative Platforms on Performance and Training.

J Minim Invasive Gynecol. 2021-3

[2]
Improving gesture-based interaction between an assistive bathing robot and older adults via user training on the gestural commands.

Arch Gerontol Geriatr. 2020

[3]
A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.

J Minim Invasive Gynecol. 2017

[4]
A Systematic Review of Serious Games in Training Health Care Professionals.

Simul Healthc. 2016-2

[5]
Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.

IEEE Trans Biomed Eng. 2015-7

[6]
An Integrated Framework for Human-Robot Collaborative Manipulation.

IEEE Trans Cybern. 2014-10-31

[7]
When to use the Bonferroni correction.

Ophthalmic Physiol Opt. 2014-9

[8]
Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.

J Biomech. 2005-11

[9]
Trust in automation: designing for appropriate reliance.

Hum Factors. 2004

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索