Silva Rafael G, Pereira José H, Canduri Fernanda, de Azevedo Walter F, Basso Luiz A, Santos Diógenes S
Centro de Pesquisas em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, PUCRS, Porto Alegre, RS, Brazil.
Arch Biochem Biophys. 2005 Oct 1;442(1):49-58. doi: 10.1016/j.abb.2005.07.021.
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors.
嘌呤核苷磷酸化酶(PNP)催化核苷和脱氧核苷的可逆磷酸解反应,生成1-磷酸核糖和嘌呤碱,这是嘌呤分解代谢途径中的重要一步。由于遗传疾病导致人体缺乏这种活性会引起T细胞损伤,而抑制该酶的药物可能有潜力被用作免疫系统调节剂,用于治疗白血病、自身免疫性疾病和器官移植排斥反应。在此,我们描述了人PNP与7-甲基-6-硫代鸟苷(一种在活性测定中大量使用的合成底物)形成复合物的动力学和晶体结构。对该结构的分析确定了配体结合后蛋白质的不同构象变化,动力学和结构数据的比较有助于理解合成底物关键位置上原子取代的影响及其对酶结合和催化的后果。这些知识可能有助于设计新型PNP抑制剂。