Suppr超能文献

嘌呤核苷磷酸化酶。1. 结构-功能研究。

Purine nucleoside phosphorylase. 1. Structure-function studies.

作者信息

Erion M D, Takabayashi K, Smith H B, Kessi J, Wagner S, Hönger S, Shames S L, Ealick S E

机构信息

Central Research Laboratory, Ciba-Geigy Ltd., Basel, Switzerland.

出版信息

Biochemistry. 1997 Sep 30;36(39):11725-34. doi: 10.1021/bi961969w.

Abstract

To probe the catalytic mechanism of human purine nucleoside phosphorylase (PNP), 13 active-site mutants were constructed and characterized by steady-state kinetics. In addition, microtiter plate assays were developed for both the phosphorolytic and synthetic reactions and used to determine the kinetic parameters of each mutant. Mutations in the purine binding site exhibited the largest effects on enzymatic activity with the Asn243Ala mutant resulting in a 1000-fold decrease in the kcat for inosine phosphorolysis. This result in combination with the crystallographic location of the Asn243 side chain suggested a potential transition state (TS) structure involving hydrogen bond donation by the carboxamido group of Asn243 to N7 of the purine base. Analogous to the oxyanion hole of serine proteases, this hydrogen bond was predicted to aid catalysis by preferentially stabilizing the TS as a consequence of the increase in negative charge on N7 that occurs during glycosidic bond cleavage and the associated increase in the N7-Asn243 hydrogen bond strength. Two residues in the phosphate binding site, namely His86 and Glu89, were also predicted to be catalytically important based on their alignment with phosphate in the X-ray structure and the 10-25-fold reduction in catalytic activity for the His86Ala and Glu89Ala mutants. In contrast, catalytic efficiencies for the Tyr88Phe and Lys244Ala mutants were comparable with wild-type, indicating that the hydrogen bonds predicted in the initial X-ray structure of PNP [Ealick, S. E., et al. (1990) J. Biol. Chem. 265, 1812-1820] were not essential for catalysis. These results provided the foundation for studies reported in the ensuing two manuscripts focused on the PNP catalytic mechanism [Erion, M. D., et al. (1997) Biochemistry 36, 11735-11748] and the use of mutagenesis to reverse the PNP substrate specificity from 6-oxopurines to 6-aminopurines [Stoeckler, J. D., et al. (1997) Biochemistry 36, 11749-11756].

摘要

为了探究人嘌呤核苷磷酸化酶(PNP)的催化机制,构建了13个活性位点突变体,并通过稳态动力学对其进行了表征。此外,还开发了用于磷酸解反应和合成反应的微孔板测定法,并用于确定每个突变体的动力学参数。嘌呤结合位点的突变对酶活性影响最大,Asn243Ala突变体导致肌苷磷酸解的kcat降低了1000倍。这一结果与Asn243侧链的晶体学位置相结合,提示了一种潜在的过渡态(TS)结构,其中Asn243的羧酰胺基团向嘌呤碱基的N7提供氢键。与丝氨酸蛋白酶的氧阴离子孔类似,由于糖苷键断裂过程中N7上负电荷的增加以及N7-Asn243氢键强度的相应增加,预计这种氢键通过优先稳定过渡态来辅助催化。基于它们在X射线结构中与磷酸的比对以及His86Ala和Glu89Ala突变体催化活性降低10-25倍,磷酸结合位点的两个残基,即His86和Glu89,也被预测具有催化重要性。相比之下,Tyr88Phe和Lys244Ala突变体的催化效率与野生型相当,表明PNP初始X射线结构中预测的氢键[Ealick, S. E., 等人 (1990) J. Biol. Chem. 265, 1812 - 1820]对催化并非必不可少。这些结果为随后两篇关注PNP催化机制的论文[Erion, M. D., 等人 (1997) Biochemistry 36, 11735 - 11748]以及利用诱变将PNP底物特异性从6-氧嘌呤逆转至6-氨基嘌呤的研究[Stoeckler, J. D., 等人 (1997) Biochemistry 36, 11749 - 11756]奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验