Raulo Erkki, Tumova Sarka, Pavlov Ivan, Pekkanen Mari, Hienola Anni, Klankki Emilia, Kalkkinen Nisse, Taira Tomi, Kilpelaïnen Ilkka, Rauvala Heikki
Neuroscience Center, University of Helsinki, Helsinki FIN-00014, Finland.
J Biol Chem. 2005 Dec 16;280(50):41576-83. doi: 10.1074/jbc.M506457200. Epub 2005 Sep 9.
HB-GAM (heparin-binding growth-associated molecule, also designated as pleiotrophin) and midkine form a two-member family of extracellular matrix proteins that bind tightly to sulfated carbohydrate structures such as heparan sulfate. These proteins are used by developing neurons as extracellular cues in axonal growth and guidance. HB-GAM was recently reported to enhance differentiation of neural stem cells. Based on the solution structure of HB-GAM, we have recently shown that HB-GAM consists of two beta-sheet domains flanked by flexible lysine-rich N- and C-terminal tails with no apparent structure. These domains are homologous to thrombospondin type I repeats present in numerous extracellular proteins that interact with the cell surface. Our findings showed that the two beta-sheet domains fold independently. We showed that the domains (but not the lysine-rich tails) in HB-GAM are required and sufficient for interaction with hippocampal neurons. The individual domains bind heparan sulfate weakly and fail to produce significant biological effects in neurite outgrowth and long term potentiation assays. The amino acids in the linker region joining the two domains may be replaced with glycines with no effect on protein function. These results suggest a co-operative action of the two beta-sheet domains in the biologically relevant interaction with neuron surface heparan sulfate.
肝素结合生长相关分子(HB-GAM,也被称为多效生长因子)和中期因子构成了一个由两种细胞外基质蛋白组成的家族,它们能紧密结合硫酸化碳水化合物结构,如硫酸乙酰肝素。在轴突生长和导向过程中,发育中的神经元将这些蛋白质用作细胞外信号。最近有报道称HB-GAM可促进神经干细胞的分化。基于HB-GAM的溶液结构,我们最近发现HB-GAM由两个β-折叠结构域组成,两侧是富含赖氨酸的灵活N端和C端尾巴,没有明显的结构。这些结构域与众多与细胞表面相互作用的细胞外蛋白质中存在的血小板反应蛋白I型重复序列同源。我们的研究结果表明,这两个β-折叠结构域独立折叠。我们发现,HB-GAM中的结构域(而非富含赖氨酸的尾巴)对于与海马神经元的相互作用是必需且足够的。单个结构域与硫酸乙酰肝素的结合较弱,并且在神经突生长和长时程增强试验中无法产生显著的生物学效应。连接两个结构域的连接区中的氨基酸可以被甘氨酸取代,而不会影响蛋白质功能。这些结果表明,两个β-折叠结构域在与神经元表面硫酸乙酰肝素的生物学相关相互作用中存在协同作用。