Smith C A, Rodman J R, Chenuel B J A, Henderson K S, Dempsey J A
John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, School of Medicine, Rm. 4245 MSC, University of Wisconsin, 1300 Univ. Ave., Madison, Wisconsin 53706, USA.
J Appl Physiol (1985). 2006 Jan;100(1):13-9. doi: 10.1152/japplphysiol.00926.2005. Epub 2005 Sep 15.
We assessed the speed of the ventilatory response to square-wave changes in alveolar P(CO2) and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemoreceptor while preventing it from sensing systemic changes in CO2, thereby allowing us to determine the response of the central chemoreceptors alone. We found the following. 1) The ventilatory response of the central chemoreceptors alone is 11.2 (SD = 3.6) s slower than when carotid bodies are allowed to sense CO2 changes. 2) On average, the central chemoreceptors contribute approximately 63% of the gain to steady-state increases in CO2. There was wide dog-to-dog variability in the relative contributions of central vs. carotid body chemoreceptors; the central exceeded the carotid body gain in four of six dogs, but in two dogs carotid body gain exceeded central CO2 gain. If humans respond similarly to dogs, we propose that the slower response of the central chemoreceptors vs. the carotid chemoreceptors prevents the central chemoreceptors from contributing significantly to ventilatory responses to rapid, transient changes in arterial P(CO2) such as those after periods of hypoventilation or hyperventilation ("ventilatory undershoots or overshoots") observed during sleep-disordered breathing. However, the greater average responsiveness of the central chemoreceptors to brain hypercapnia in the steady-state suggests that these receptors may contribute significantly to ventilatory overshoots once unstable/periodic breathing is fully established.
我们评估了完整、未麻醉犬对肺泡P(CO2)方波变化的通气反应速度,以及中枢化学感受器与颈动脉体化学感受器对CO2的稳态通气反应的相对增益。我们采用可逆性分离颈动脉窦的体外灌注,以维持颈动脉体化学感受器的正常紧张性活动,同时防止其感知CO2的全身变化,从而使我们能够单独确定中枢化学感受器的反应。我们发现以下情况。1)仅中枢化学感受器的通气反应比允许颈动脉体感知CO2变化时慢11.2(标准差=3.6)秒。2)平均而言,中枢化学感受器对CO2稳态增加的增益贡献约为63%。中枢与颈动脉体化学感受器的相对贡献在不同犬之间存在很大差异;在六只犬中有四只中枢化学感受器的增益超过颈动脉体,但在两只犬中颈动脉体的增益超过中枢化学感受器对CO2的增益。如果人类与犬的反应相似,我们推测中枢化学感受器相对于颈动脉化学感受器的较慢反应,会阻止中枢化学感受器对动脉P(CO2)快速、短暂变化(如在睡眠呼吸障碍期间观察到的通气不足或通气过度后的“通气下冲或上冲”)的通气反应做出显著贡献。然而,中枢化学感受器在稳态下对脑高碳酸血症的平均反应性更高,这表明一旦不稳定/周期性呼吸完全建立,这些感受器可能对通气上冲有显著贡献。