Suppr超能文献

嵌段共聚物的界面反应性:理解两亲性向亲水性的转变。

Interfacial reactivity of block copolymers: understanding the amphiphile-to-hydrophile transition.

作者信息

Napoli Alessandro, Bermudez Harry, Hubbell Jeffrey A

机构信息

Institute for Biomedical Engineering and Department of Materials, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, CH-8044 Zurich, Switzerland.

出版信息

Langmuir. 2005 Sep 27;21(20):9149-53. doi: 10.1021/la0512300.

Abstract

Block copolymers offer an interesting platform to study chemically triggered transitions in self-assembled structures. We have previously reported the oxidative degradation of vesicles made of poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) copolymers. Here we propose a mechanism for vesicle degradation deduced from copolymer conformational changes occurring at the air/water interface in a Langmuir trough together with a reactive subphase. The hydrophobic PPS block is converted into hydrophilic poly(propylene sulfoxide) and poly(propylene sulfone) by oxidation upon exposure to 1% aqueous H(2)O(2) subphase. As a result, a dramatic increase in area per molecule at constant surface pressure (Pi) was observed, followed by an apparent decrease (recorded as decrease in area at constant Pi) due to copolymer dissolution. For monolayers at the air/water surface, the large interfacial tensions present suppress increases in local curvature for alleviating the increased hydrophilicity of the copolymer chains. By contrast, vesicles can potentially rearrange molecules in their bilayers to accommodate a changing hydrophilic-lipophilic balance (HLB). Similar time scales for monolayer rearrangement and vesicle degradation imply a common copolymer chain solubilization mechanism, which in vesicles lead to an eventual transition to aggregates of higher curvature, such as cylindrical and spherical micelles. Subtle differences in response to the applied surface pressure for the diblock compared to the triblock suggest an effect of the different chain mobility.

摘要

嵌段共聚物为研究自组装结构中化学触发的转变提供了一个有趣的平台。我们之前报道过由聚(硫化丙烯)-聚(乙二醇)(PPS-PEG)共聚物制成的囊泡的氧化降解。在此,我们提出一种囊泡降解机制,该机制是从在Langmuir槽中空气/水界面处与反应性子相一起发生的共聚物构象变化推导出来的。疏水性的PPS嵌段在暴露于1%的H₂O₂水相时通过氧化转化为亲水性的聚(亚丙基亚砜)和聚(亚丙基砜)。结果,在恒定表面压力(π)下观察到每分子面积急剧增加,随后由于共聚物溶解出现明显下降(记录为在恒定π下面积减小)。对于空气/水表面的单分子层,存在的大界面张力抑制了局部曲率的增加,以缓解共聚物链亲水性的增加。相比之下,囊泡可能会在其双层中重新排列分子,以适应不断变化的亲水-亲脂平衡(HLB)。单分子层重排和囊泡降解的相似时间尺度意味着一种共同的共聚物链溶解机制,在囊泡中这种机制最终导致向更高曲率聚集体的转变,如圆柱形和球形胶束。与三嵌段相比,二嵌段对施加表面压力的响应存在细微差异,这表明不同链迁移率的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验