Suppr超能文献

在生理温度下通过定向进化进行的结构扰动和补偿导致β-内酰胺酶的热稳定性提高。

Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase.

作者信息

Hecky Jochen, Müller Kristian M

机构信息

Institut für Biologie III, Albert-Ludwigs-Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany.

出版信息

Biochemistry. 2005 Sep 27;44(38):12640-54. doi: 10.1021/bi0501885.

Abstract

The choice of protein for use in technical and medical applications is limited by stability issues, making understanding and engineering of stability key. Here, enzyme destabilization by truncation was combined with directed evolution to create stable variants of TEM-1 beta-lactamase. This enzyme was chosen because of its implication in prodrug activation therapy, pathogen resistance to lactam antibiotics, and reporter enzyme bioassays. Removal of five N-terminal residues generated a mutant which did not confer antibiotic resistance at 37 degrees C. Accordingly, the half-life time in vitro was only 7 s at 40 degrees C. However, three cycles comprising random mutagenesis, DNA shuffling, and metabolic selection at 37 degrees C yielded mutants providing resistance levels significantly higher than that of the wild type. These mutants demonstrated increased thermoactivity and thermostability in time-resolved kinetics at various temperatures. Chemical denaturation revealed improved thermodynamic stabilities of a three-state unfolding pathway exceeding wild-type construct stability. Elongation of one optimized deletion mutant to full length increased its stability even further. Compared to that of the wild type, the temperature optimum was shifted from 35 to 50 degrees C, and the beginning of heat inactivation increased by 20 degrees C while full activity at low temperatures was maintained. We attribute these effects mainly to two independently acting boundary interface residue exchanges (M182T and A224V). Structural perturbation by terminal truncation, evolutionary compensation at physiological temperatures, and elongation is an efficient way to analyze and improve thermostability without the need for high-temperature selection, structural information, or homologous proteins.

摘要

用于技术和医学应用的蛋白质选择受到稳定性问题的限制,因此对稳定性的理解和工程改造是关键。在此,通过截短使酶不稳定与定向进化相结合,以创建TEM-1β-内酰胺酶的稳定变体。选择这种酶是因为它在前药激活疗法、病原体对β-内酰胺抗生素的抗性以及报告酶生物测定中具有重要作用。去除五个N端残基产生了一个在37℃下不赋予抗生素抗性的突变体。因此,在40℃下其体外半衰期仅为7秒。然而,通过三轮包括随机诱变、DNA改组和在37℃下的代谢选择,产生了抗性水平明显高于野生型的突变体。这些突变体在不同温度下的时间分辨动力学中表现出增加的热活性和热稳定性。化学变性显示三态解折叠途径的热力学稳定性得到改善,超过了野生型构建体的稳定性。将一个优化的缺失突变体延长至全长进一步提高了其稳定性。与野生型相比,最适温度从35℃转变为50℃,热失活起始温度提高了20℃,同时在低温下保持了完全活性。我们将这些效应主要归因于两个独立起作用的边界界面残基交换(M182T和A224V)。通过末端截短、生理温度下的进化补偿和延长进行结构扰动,是一种无需高温选择、结构信息或同源蛋白即可分析和提高热稳定性的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验