Clausen Jürgen, Junge Wolfgang, Dau Holger, Haumann Michael
Universität Osnabrück, FB Biologie/Chemie, Abt. Biophysik, Barbarastrasse 11, D-49069 Osnabrück, Germany.
Biochemistry. 2005 Sep 27;44(38):12775-9. doi: 10.1021/bi051183a.
The atmospheric dioxygen is produced by photosynthetic organisms. This light-driven process culminates in what appears as one step: a four-electron abstraction from two water molecules bound to the Mn4Ca complex of photosystem II. Recently, an intermediate of the O2-producing reaction sequence was stabilized by elevated oxygen backpressure and detected by UV flash photometry [Clausen, J., and Junge, W. (2004) Nature 430, 480]. We scrutinized its properties by delayed chlorophyll fluorescence measurements. Half-suppression of oxygen evolution was observed at a similar O2 pressure of 2.3 bar, as previously, now with photosystem II membrane particles from spinach, without artificial electron acceptors, and at a high signal-to-noise ratio. The data are tentatively interpreted as the stabilization of a 2-fold oxidized state of the catalytic center (S2*) with bound peroxide and its slow conversion into the normal S2 state by the release of peroxide.
大气中的氧气是由光合生物产生的。这个光驱动过程最终表现为一个步骤:从与光系统II的Mn4Ca复合物结合的两个水分子中夺取四个电子。最近,通过提高氧气背压稳定了产氧反应序列的一个中间体,并通过紫外闪光光度法进行了检测[克劳森,J.,和荣格,W.(2004年)《自然》430,480]。我们通过延迟叶绿素荧光测量仔细研究了它的性质。与之前一样,在2.3巴的相似氧气压力下观察到氧气释放的半抑制,现在使用的是来自菠菜的光系统II膜颗粒,没有人工电子受体,且信噪比很高。这些数据初步解释为催化中心的二倍氧化态(S2*)与结合的过氧化物的稳定化,以及过氧化物的释放使其缓慢转化为正常的S2态。