Suppr超能文献

在高氧压力下光合放氧不会逆转:对水氧化复合物的机制影响

Photosynthetic oxygen evolution is not reversed at high oxygen pressures: mechanistic consequences for the water-oxidizing complex.

作者信息

Kolling Derrick R J, Brown Tyler S, Ananyev Gennady, Dismukes G Charles

机构信息

Department of Chemistry and Princeton Environmental Institute, Princeton University, Washington Road, Princeton, New Jersey 08544, USA.

出版信息

Biochemistry. 2009 Feb 17;48(6):1381-9. doi: 10.1021/bi801774f.

Abstract

We investigated the effects of elevated O(2) pressure on the production of O(2) by photosynthetic organisms in several species of plants, algae, and a cyanobacterium. Using a noninvasive fluorometry technique to monitor sequential turnover of the photosystem II (PSII) reaction center as a function of O(2) pressures, we showed that none of the reactions of water oxidation are affected by elevated O(2) pressures up to 50-fold greater than atmospheric conditions. Thus, the terminal step of O(2) release from the water oxidation complex (S(4) --> S(0) + O(2) + nH(+)) is not reversible in whole cells, leaves, or isolated thylakoid membranes containing PSII, in contrast to reports using detergent-extracted PSII complexes. This implies that there is no thermodynamically accessible intermediate that can be populated by preventing or reversing the O(2) release step with O(2) at atmospheric pressure. To assess the sensitivity of PSII charge recombination to O(2) pressure, we quantitatively modeled the consequences of two putative perturbations to the catalytic cycle of water oxidation within the framework of the Kok model. On the basis of the breadth of oxygenic phototrophs examined in this study, we conclude that O(2) accumulation in cells or the atmosphere does not suppress photosynthetic productivity through the reversal of water oxidation in contemporary phototrophs and would have been unlikely to influence the evolution of oxygenic photosynthesis.

摘要

我们研究了升高的氧气压力对几种植物、藻类和一种蓝细菌中光合生物产氧的影响。使用非侵入性荧光测定技术监测光系统II(PSII)反应中心的连续周转作为氧气压力的函数,我们发现,在比大气条件高50倍的氧气压力下,水氧化的任何反应都不受影响。因此,与使用去污剂提取的PSII复合物的报道相反,在含有PSII的全细胞、叶片或分离的类囊体膜中,水氧化复合物中氧气释放的终末步骤(S(4)→S(0)+O(2)+nH(+))是不可逆的。这意味着不存在热力学上可及的中间体,该中间体可通过在大气压下用氧气阻止或逆转氧气释放步骤来填充。为了评估PSII电荷复合对氧气压力的敏感性,我们在Kok模型的框架内对水氧化催化循环的两种假定扰动的后果进行了定量建模。基于本研究中所检测的含氧光合生物的范围,我们得出结论,细胞或大气中氧气的积累不会通过当代光合生物中水氧化的逆转来抑制光合生产力,并且不太可能影响含氧光合作用的进化。

相似文献

2
Eight steps preceding O-O bond formation in oxygenic photosynthesis--a basic reaction cycle of the Photosystem II manganese complex.
Biochim Biophys Acta. 2007 Jun;1767(6):472-83. doi: 10.1016/j.bbabio.2007.02.022. Epub 2007 Mar 12.
3
What are the oxidation states of manganese required to catalyze photosynthetic water oxidation?
Biophys J. 2012 Jul 18;103(2):313-22. doi: 10.1016/j.bpj.2012.05.031. Epub 2012 Jul 17.
4
Natural isoforms of the Photosystem II D1 subunit differ in photoassembly efficiency of the water-oxidizing complex.
Photosynth Res. 2016 May;128(2):141-50. doi: 10.1007/s11120-015-0208-8. Epub 2015 Dec 19.
5
The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis.
Free Radic Biol Med. 2019 Aug 20;140:233-249. doi: 10.1016/j.freeradbiomed.2019.05.003. Epub 2019 May 9.
6
Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.
J Biol Chem. 2013 Feb 22;288(8):5451-62. doi: 10.1074/jbc.M112.394668. Epub 2012 Dec 27.
8
Azide as a probe of proton transfer reactions in photosynthetic oxygen evolution.
Biophys J. 2008 Dec 15;95(12):5843-50. doi: 10.1529/biophysj.108.136879. Epub 2008 Sep 19.
9
Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis.
Acc Chem Res. 2009 Dec 21;42(12):1935-43. doi: 10.1021/ar900249x.

引用本文的文献

2
Insights into PSII's SY State: An Electronic and Magnetic Analysis.
J Phys Chem Lett. 2024 Jan 18;15(2):499-506. doi: 10.1021/acs.jpclett.3c03026. Epub 2024 Jan 8.
3
Solar energy conversion by photosystem II: principles and structures.
Photosynth Res. 2023 Jun;156(3):279-307. doi: 10.1007/s11120-022-00991-y. Epub 2023 Feb 24.
4
Symbiosis extended: exchange of photosynthetic O and fungal-respired CO mutually power metabolism of lichen symbionts.
Photosynth Res. 2020 Mar;143(3):287-299. doi: 10.1007/s11120-019-00702-0. Epub 2019 Dec 31.
6
Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.
J Biol Chem. 2013 Feb 22;288(8):5451-62. doi: 10.1074/jbc.M112.394668. Epub 2012 Dec 27.
7
Ecophysiology of photosynthesis in macroalgae.
Photosynth Res. 2012 Sep;113(1-3):105-25. doi: 10.1007/s11120-012-9768-z. Epub 2012 Jul 28.
8
Adventures with cyanobacteria: a personal perspective.
Front Plant Sci. 2011 Jul 6;2:28. doi: 10.3389/fpls.2011.00028. eCollection 2011.
9
Thermodynamic limitations of photosynthetic water oxidation at high proton concentrations.
J Biol Chem. 2011 May 20;286(20):18222-8. doi: 10.1074/jbc.M111.237941. Epub 2011 Apr 4.
10
Membrane-inlet mass spectrometry reveals a high driving force for oxygen production by photosystem II.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3602-7. doi: 10.1073/pnas.1014249108. Epub 2011 Feb 14.

本文引用的文献

3
Biodiesel from microalgae.
Biotechnol Adv. 2007 May-Jun;25(3):294-306. doi: 10.1016/j.biotechadv.2007.02.001. Epub 2007 Feb 13.
4
Photosynthetic oxygen production.
Science. 2006 Jun 9;312(5779):1470-2; author reply 1470-2. doi: 10.1126/science.312.5779.1470c.
5
Photosynthetic O2 formation tracked by time-resolved x-ray experiments.
Science. 2005 Nov 11;310(5750):1019-21. doi: 10.1126/science.1117551.
6
Period four oscillations in chlorophyll a fluorescence.
Photosynth Res. 2002;73(1-3):165-8. doi: 10.1023/A:1020430610627.
8
How fast can photosystem II split water? Kinetic performance at high and low frequencies.
Photosynth Res. 2005 Jun;84(1-3):355-65. doi: 10.1007/s11120-004-7081-1.
10
Detection of an intermediate of photosynthetic water oxidation.
Nature. 2004 Jul 22;430(6998):480-3. doi: 10.1038/nature02676.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验