Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Linnaeus väg 6, S-90187 Umea, Sweden.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3602-7. doi: 10.1073/pnas.1014249108. Epub 2011 Feb 14.
Oxygenic photosynthesis is the basis for aerobic life on earth. The catalytic Mn(4)O(x)CaY(Z) center of photosystem II (PSII), after fourfold oxidation, extracts four electrons from two water molecules to yield dioxygen. This reaction cascade has appeared as a single four-electron transfer that occurs in typically 1 ms. Inevitable redox intermediates have so far escaped detection, probably because of very short lifetime. Previous attempts to stabilize intermediates by high O(2)-back pressure have revealed controversial results. Here we monitored by membrane-inlet mass spectrometry (MIMS) the production of from (18)O-labeled water against a high background of in a suspension of PSII-core complexes. We found neither an inhibition nor an altered pattern of O(2) production by up to 50-fold increased concentration of dissolved O(2). Lack of inhibition is in line with results from previous X-ray absorption and visible-fluorescence experiments, but contradictory to the interpretation of previous UV-absorption data. Because we used essentially identical experimental conditions in MIMS as had been used in the UV work, the contradiction was serious, and we found it was not to be resolved by assuming a significant slowdown of the O(2) release kinetics or a subsequent slow conformational relaxation. This calls for reevaluation of the less direct UV experiments. The direct detection of O(2) release by MIMS shows unequivocally that O(2) release in PSII is highly exothermic. Under the likely assumption that one H(+) is released in the S(4) → S(0) transition, the driving force at pH 6.5 and atmospheric O(2) pressure is at least 220 meV, otherwise 160 meV.
好氧生物的光合作用是地球上有氧生命的基础。光系统 II(PSII)的催化 Mn(4)O(x)CaY(Z)中心,经过四重氧化,从两个水分子中提取四个电子,生成氧气。这个反应级联被认为是一个单一的四电子转移,通常发生在 1 毫秒内。不可避免的氧化还原中间体迄今为止仍未被检测到,可能是因为它们的寿命非常短。以前通过高 O(2)背压来稳定中间体的尝试得到了有争议的结果。在这里,我们通过膜入口质谱(MIMS)监测了在 PSII 核心复合物悬浮液中高背景下(18)O 标记水的产生。我们发现,溶解氧浓度增加 50 倍,既没有抑制,也没有改变 O(2)的产生模式。缺乏抑制与以前的 X 射线吸收和可见荧光实验的结果一致,但与以前的紫外吸收数据的解释相矛盾。由于我们在 MIMS 中使用的实验条件与以前在 UV 工作中使用的条件基本相同,因此这种矛盾是严重的,我们发现,假设 O(2)释放动力学明显减慢或随后的构象松弛缓慢,都无法解决这个问题。这就需要重新评估那些不太直接的 UV 实验。MIMS 对 O(2)释放的直接检测毫不含糊地表明,PSII 中的 O(2)释放是高度放热的。在 S(4)→S(0) 跃迁中释放一个 H(+)的假设下,在 pH 6.5 和大气 O(2)压力下的驱动力至少为 220 meV,否则为 160 meV。