Lee Dong-Sun, Flachsová Eva, Bodnárová Michaela, Demeler Borries, Martásek Pavel, Raman C S
Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14232-7. doi: 10.1073/pnas.0506557102. Epub 2005 Sep 21.
Hereditary coproporphyria is an autosomal dominant disorder resulting from the half-normal activity of coproporphyrinogen oxidase (CPO), a mitochondrial enzyme catalyzing the antepenultimate step in heme biosynthesis. The mechanism by which CPO catalyzes oxidative decarboxylation, in an extraordinary metal- and cofactor-independent manner, is poorly understood. Here, we report the crystal structure of human CPO at 1.58-A resolution. The structure reveals a previously uncharacterized tertiary topology comprising an unusually flat seven-stranded beta-sheet sandwiched by alpha-helices. In the biologically active dimer (K(D) = 5 x 10(-7) M), one monomer rotates relative to the second by approximately 40 degrees to create an intersubunit interface in close proximity to two independent enzymatic sites. The unexpected finding of citrate at the active site allows us to assign Ser-244, His-258, Asn-260, Arg-262, Asp-282, and Arg-332 as residues mediating substrate recognition and decarboxylation. We favor a mechanism in which oxygen serves as the immediate electron acceptor, and a substrate radical or a carbanion with substantial radical character participates in catalysis. Although several mutations in the CPO gene have been described, the molecular basis for how these alterations diminish enzyme activity is unknown. We show that deletion of residues (392-418) encoded by exon six disrupts dimerization. Conversely, harderoporphyria-causing K404E mutation precludes a type I beta-turn from retaining the substrate for the second decarboxylation cycle. Together, these findings resolve several questions regarding CPO catalysis and provide insights into hereditary coproporphyria.
遗传性粪卟啉原血症是一种常染色体显性疾病,由粪卟啉原氧化酶(CPO)活性减半所致,CPO是一种催化血红素生物合成倒数第二步反应的线粒体酶。CPO以一种不依赖于金属和辅因子的特殊方式催化氧化脱羧反应,其机制尚不清楚。在此,我们报道了人CPO的晶体结构,分辨率为1.58 Å。该结构揭示了一种以前未被表征的三级拓扑结构,由一个异常扁平的七股β折叠片层夹在α螺旋之间组成。在具有生物活性的二聚体(K(D) = 5 × 10(-7) M)中,一个单体相对于另一个单体旋转约40度,在靠近两个独立酶活性位点处形成亚基间界面。活性位点处意外发现的柠檬酸盐使我们能够确定Ser-244、His-258、Asn-260、Arg-262、Asp-282和Arg-332为介导底物识别和脱羧反应的残基。我们支持这样一种机制,即氧作为直接的电子受体,底物自由基或具有显著自由基特征的碳负离子参与催化反应。虽然已经描述了CPO基因中的几种突变,但这些改变如何降低酶活性的分子基础尚不清楚。我们发现,外显子6编码的残基(392-418)缺失会破坏二聚化。相反,导致硬卟啉原血症的K404E突变阻止了I型β转角保留底物用于第二个脱羧循环。这些发现共同解决了几个关于CPO催化作用的问题,并为遗传性粪卟啉原血症提供了见解。