Popescu I A, Shaw C P, Zavgorodni S F, Beckham W A
Department of Medical Physics, British Columbia Cancer Agency, Victoria, BC, Canada.
Phys Med Biol. 2005 Jul 21;50(14):3375-92. doi: 10.1088/0031-9155/50/14/013. Epub 2005 Jul 6.
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
传统上,蒙特卡罗(MC)模拟用于与实验数据或商业治疗计划系统(TPS)进行单野相对比较。然而,临床治疗计划通常涉及多个射野。由于每个射野的贡献必须准确量化,因此只有采用绝对剂量测定法才能进行多野MC模拟。因此,我们开发了一种严格的校准方法,可将监测单位(MU)纳入MC模拟。这种绝对剂量测定形式可由任何BEAMnrc/DOSXYZnrc用户轻松实现,并适用于开放野和挡块野的任何配置,包括调强放射治疗(IMRT)计划。我们的方法涉及放射治疗直线加速器(直线加速器)监测电离室中记录的剂量、入射到靶区的初始粒子数与射野大小之间的关系。我们发现,对于6 MV光子束的10×10 cm2射野,在我们的模型中,1 MU对应于8.129×10(13)±1.0%个入射到靶区的电子,以及虚拟直线加速器监测室中的总剂量20.87 cGy±1.0%。我们对开放野和调强野的MC结果进行了广泛的实验验证,包括在圆柱形模体和兰多人体模体的CT数据集上模拟的动态7野IMRT计划,这些计划通过使用电离室和热释光剂量计(TLD)的测量进行了验证。我们的模拟结果与实验结果非常吻合,一般百分比差异小于2%,证明了我们蒙特卡罗绝对剂量计算的准确性。