Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
J Appl Clin Med Phys. 2022 Sep;23(9):e13663. doi: 10.1002/acm2.13663. Epub 2022 Jun 14.
This study aims to develop and validate a simple geometric model of the accelerator head, from which a particle phase space can be calculated for application to fast Monte Carlo dose calculation in real-time adaptive photon radiotherapy. With this objective in view, the study investigates whether the phase space model can facilitate dose calculations which are compatible with those of a commercial treatment planning system, for convenient interoperability.
A dual-source model of the head of a Versa HD accelerator (Elekta AB, Stockholm, Sweden) was created. The model used parameters chosen to be compatible with those of 6-MV flattened and 6-MV flattening filter-free photon beams in the RayStation treatment planning system (RaySearch Laboratories, Stockholm, Sweden). The phase space model was used to calculate a photon phase space for several treatment plans, and the resulting phase space was applied to the Dose Planning Method (DPM) Monte Carlo dose calculation algorithm. Simple fields and intensity-modulated radiation therapy (IMRT) treatment plans for prostate and lung were calculated for benchmarking purposes and compared with the convolution-superposition dose calculation within RayStation.
For simple square fields in a water phantom, the calculated dose distribution agrees to within ±2% with that from the commercial treatment planning system, except in the buildup region, where the DPM code does not model the electron contamination. For IMRT plans of prostate and lung, agreements of ±2% and ±6%, respectively, are found, with slightly larger differences in the high dose gradients.
The phase space model presented allows convenient calculation of a phase space for application to Monte Carlo dose calculation, with straightforward translation of beam parameters from the RayStation beam model. This provides a basis on which to develop dose calculation in a real-time adaptive setting.
本研究旨在开发和验证一种加速器头部的简单几何模型,可据此计算粒子相空间,以便在实时自适应光子放射治疗中快速进行蒙特卡罗剂量计算。有鉴于此,本研究旨在探讨该相空间模型是否能够促进与商业治疗计划系统兼容的剂量计算,以实现方便的互操作性。
创建了 Versa HD 加速器(瑞典斯德哥尔摩 Elekta AB)头部的双源模型。该模型使用的参数选择与 RayStation 治疗计划系统(瑞典斯德哥尔摩 RaySearch Laboratories)中的 6-MV 平坦化和 6-MV 无均整滤过光子束兼容。使用相空间模型计算了几个治疗计划的光子相空间,将得到的相空间应用于剂量规划方法(DPM)蒙特卡罗剂量计算算法。为了基准测试目的,计算了前列腺和肺部的简单射野和调强放疗(IMRT)治疗计划,并与 RayStation 中的卷积叠加剂量计算进行了比较。
在水模中的简单方形射野中,计算的剂量分布与商业治疗计划系统的结果相差在±2%以内,除了在电子污染未建模的 buildup 区域。对于前列腺和肺部的 IMRT 计划,分别发现了±2%和±6%的一致性,在高剂量梯度处的差异略大。
所提出的相空间模型允许方便地计算相空间,以便应用于蒙特卡罗剂量计算,并且可以从 RayStation 束模型直接转换束参数。这为实时自适应设置中的剂量计算奠定了基础。