Kim Eunsuk, Helton Matthew E, Lu Shen, Moënne-Loccoz Pierre, Incarvito Christopher D, Rheingold Arnold L, Kaderli Susan, Zuberbühler Andreas D, Karlin Kenneth D
Department of Chemistry, Remsen Hall, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Inorg Chem. 2005 Oct 3;44(20):7014-29. doi: 10.1021/ic050446m.
In cytochrome c oxidase synthetic modeling studies, we recently reported a new mu-eta2:eta2-peroxo binding mode in the heteronuclear heme/copper complex [(2L)Fe(III)-(O2(2-))-CuII]+ (6) which is effected by tridentate copper chelation (J. Am. Chem. Soc. 2004, 126, 12716). To establish fundamental coordination and O2-reactivity chemistry, we have studied and describe here (i) the structure and dioxygen reactivity of the copper-free compound (2L)FeII (1), (ii) detailed spectroscopic properties of 6 in comparisons with those of known mu-eta2:eta1 heme-peroxo-copper complexes, (iii) formation of 6 from the reactions of [(2L)FeIICuI]+ (3) and dioxygen by stopped-flow kinetics, and (iv) reactivities of 6 with CO and PPh3. In the absence of copper, 1 serves as a myoglobin model compound possessing a pyridine-bound five-coordinate iron(II)-porphyrinate which undergoes reversible dioxygen binding. Oxygenation of 3 below -60 degrees C generates the heme-peroxo-copper complex 6 with strong antiferromagnetic coupling between high-spin iron(III) and copper(II) to yield an S = 2 spin system. Stopped-flow kinetics in CH2Cl2/6% EtCN show that dioxygen reacts with iron(II) first to form a heme-superoxide moiety, [(EtCN)(2L)FeIII-(O2-)...CuI(EtCN)]+ (5), which further reacts with Cu(I) to generate 6. Compared to those properties of a known mu-eta2:eta1-heme-peroxo-copper complex, 6 has a significantly diminished resonance Raman nu(O-O) stretching frequency at 747 cm(-1) and distinctive visible absorptions at 485, 541, and 572 nm, all of which seem to be characteristics of a mu-eta2:eta2-heme-peroxo-copper system. Addition of CO or PPh3 to 6 yields a bis-CO adduct of 3 or a PPh(3) adduct of 5, the latter with a remaining FeIII-(O2-) moiety.
在细胞色素c氧化酶的合成模型研究中,我们最近报道了异核血红素/铜配合物[(2L)Fe(III)-(O₂²⁻)-CuII]+ (6)中一种新的μ-η²:η²-过氧结合模式,它受三齿铜螯合作用影响(《美国化学会志》2004年,第126卷,第12716页)。为了确立基本的配位和O₂反应化学,我们在此研究并描述了:(i) 无铜化合物(2L)FeII (1)的结构和与二氧的反应活性;(ii) 6与已知的μ-η²:η¹血红素-过氧-铜配合物相比的详细光谱性质;(iii) 通过停流动力学研究[(2L)FeIICuI]+ (3)与二氧反应生成6的过程;(iv) 6与CO和PPh₃的反应活性。在没有铜的情况下,1作为一种肌红蛋白模型化合物,具有一个吡啶配位的五配位铁(II)-卟啉,它能发生可逆的二氧结合。在低于-60℃时,3被氧合生成血红素-过氧-铜配合物6,其中高自旋铁(III)和铜(II)之间存在强反铁磁耦合,产生一个S = 2的自旋体系。在CH₂Cl₂/6% EtCN中的停流动力学表明,二氧首先与铁(II)反应形成一个血红素-超氧部分,即[(EtCN)(2L)FeIII-(O₂⁻)...CuI(EtCN)]+ (5),它进一步与Cu(I)反应生成6。与已知的μ-η²:η¹-血红素-过氧-铜配合物的性质相比,6在747 cm⁻¹处的共振拉曼ν(O-O)伸缩频率显著降低,在485、541和572 nm处有独特的可见吸收,所有这些似乎都是μ-η²:η²-血红素-过氧-铜体系的特征。向6中加入CO或PPh₃会生成3的双CO加合物或5的PPh₃加合物,后者带有一个剩余的FeIII-(O₂⁻)部分。