Liu Jin-Gang, Naruta Yoshinori, Tani Fumito
Institute for Materials Chemistry and Engineering, Kyushu University, Higashi-ku, Fukuoka, 812-8581, Japan.
Chemistry. 2007;13(22):6365-78. doi: 10.1002/chem.200601884.
Two synthetic models of the active site of cytochrome c oxidase--[(LN4-OH)CuI-FeII(TMP)]+ (1 a) and [(LN3-OH)CuI-FeII(TMP)]+ (2 a)-have been designed and synthesized. These models each contain a heme and a covalently attached copper moiety supported either by a tetradentate N4-copper chelate or by a tridentate N3-copper chelate including a moiety that acts as a mimic of the crosslinked His-Tyr component of cytochrome c oxidase. Low-temperature oxygenation reactions of these models have been investigated by spectroscopic methods including UV/Vis, resonance Raman, ESI-MS, and EPR spectroscopy. Oxygenation of the tetradentate model 1 a in MeCN and in other solvents produces a low-temperature-stable dioxygen-bridged peroxide [(LN4-OH)CuII-O2-FeIII(TMP)]+ {nuO--O=799 (16O2)/752 cm(-1) (18O2)}, while a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] {nuFe--O2: 576 (16O2)/551 cm(-1) (18O2)} is generated when the tridentate model 2 a is oxygenated in EtCN solution under similar experimental conditions. The coexistence of a heme superoxide species [(TMP)FeIII(O2-)CuIILN3-OH] and a bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ species in equal amounts is observed when the oxygenation reaction of 2 a is performed in CH2Cl(2)/7 % EtCN, while the percentage of the peroxide (approximately 70 %) in relation to superoxide (approximately 30 %) increases further when the crosslinked phenol moiety in 2 a is deprotonated to produce the bridged peroxide [(LN3-OH)CuII-O2-FeIII(TMP)]+ {nuO--O: 812 (16O2)/765 cm(-1) (18O2)} as the main dioxygen intermediate. The weak reducibility and decreased O2 reactivity of the tricoordinated CuI site in 2 a are responsible for the solvent-dependent formation of dioxygen adducts. The initial binding of dioxygen to the copper site en route to the formation of a bridged heme-O2-Cu intermediate by model 2 a is suggested and the deprotonated crosslinked His-Tyr moiety might contribute to enhancement of the O2 affinity of the CuI site at an early stage of the dioxygen-binding process.
已设计并合成了细胞色素c氧化酶活性位点的两种合成模型——[(LN4 - OH)CuI - FeII(TMP)]⁺ (1 a) 和 [(LN3 - OH)CuI - FeII(TMP)]⁺ (2 a)。这些模型各自包含一个血红素和一个通过四齿N4 - 铜螯合物或三齿N3 - 铜螯合物共价连接的铜部分,其中三齿N3 - 铜螯合物包含一个模拟细胞色素c氧化酶交联His - Tyr组分的部分。已通过包括紫外/可见光谱、共振拉曼光谱、电喷雾电离质谱和电子顺磁共振光谱在内的光谱方法研究了这些模型的低温氧化反应。在乙腈和其他溶剂中,四齿模型1 a的氧化产生一种低温稳定的双氧桥连过氧化物[(LN4 - OH)CuII - O₂ - FeIII(TMP)]⁺ {νO - O = 799 (¹⁶O₂)/752 cm⁻¹ (¹⁸O₂)},而当在类似实验条件下在乙腈溶液中氧化三齿模型2 a时,会生成一种血红素超氧物种[(TMP)FeIII(O₂⁻)CuIILN3 - OH] {νFe - O₂: 576 (¹⁶O₂)/551 cm⁻¹ (¹⁸O₂)}。当在二氯甲烷/7%乙腈中进行2 a的氧化反应时,观察到等量的血红素超氧物种[(TMP)FeIII(O₂⁻)CuIILN3 - OH]和桥连过氧化物[(LN3 - OH)CuII - O₂ - FeIII(TMP)]⁺物种共存,而当2 a中的交联酚部分去质子化以生成桥连过氧化物[(LN3 - OH)CuII - O₂ - FeIII(TMP)]⁺ {νO - O: 812 (¹⁶O₂)/765 cm⁻¹ (¹⁸O₂)}作为主要双氧中间体时,过氧化物(约70%)相对于超氧化物(约30%)的比例进一步增加。2 a中三配位CuI位点的弱还原性和降低的O₂反应性是双氧加合物溶剂依赖性形成的原因。提出了双氧在通过模型2 a形成桥连血红素 - O₂ - Cu中间体的过程中最初与铜位点的结合,并且去质子化的交联His - Tyr部分可能在双氧结合过程的早期阶段有助于增强CuI位点对O₂的亲和力。