Kass Dustin, Katz Sagie, Özgen Hivda, Mebs Stefan, Haumann Michael, García-Serres Ricardo, Dau Holger, Hildebrandt Peter, Lohmiller Thomas, Ray Kallol
Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
J Am Chem Soc. 2024 Sep 11;146(36):24808-24817. doi: 10.1021/jacs.4c04492. Epub 2024 Jul 5.
Cytochrome oxidase (CcO) is a heme copper oxidase (HCO) that catalyzes the natural reduction of oxygen to water. A profound understanding of some of the elementary steps leading to the intricate 4e/4H reduction of O is presently lacking. A total spin = 1 Fe-(O)-Cu () intermediate is proposed to reduce the overpotentials associated with the reductive O-O bond rupture by allowing electron transfer from a tyrosine moiety without the necessity of any spin-surface crossing. Direct evidence of the involvement of in the CcO catalytic cycle is, however, missing. A number of heme copper peroxido complexes have been prepared as synthetic models of , but all of them possess the catalytically nonrelevant = 0 ground state resulting from antiferromagnetic coupling between the = 1/2 Fe and Cu centers. In a complete nonheme approach, we now report the spectroscopic characterization and reactivity of the Fe-(O)-Cu intermediates and , which differ only by a single -CH versus -H substituent on the central amine of the tridentate ligands binding to copper. Complex with an end-on peroxido core and ferromagnetically ( = 1) coupled Fe and Cu centers performs H-bonding-mediated O-O bond cleavage in the presence of phenol to generate oxoiron(IV) and exchange-coupled copper(II) and PhO moieties. In contrast, the μ-η:η peroxido complex , with a = 0 ground state, is unreactive toward phenol. Thus, the implications for spin topology contributions to O-O bond cleavage, as proposed for the heme Fe-(O)-Cu intermediate in CcO, can be extended to nonheme chemistry.
细胞色素氧化酶(CcO)是一种血红素铜氧化酶(HCO),可催化氧气自然还原为水。目前,对于导致氧气复杂的4e/4H还原的一些基本步骤,我们还缺乏深入的了解。有人提出,一个总自旋 = 1的Fe-(O)-Cu()中间体可以通过允许电子从酪氨酸部分转移,而无需任何自旋-表面交叉,来降低与还原性O-O键断裂相关的过电位。然而,目前还缺少关于在CcO催化循环中参与作用的直接证据。已经制备了许多血红素铜过氧化物配合物作为的合成模型,但它们都具有催化无关的 = 0基态,这是由 = 1/2的Fe和Cu中心之间的反铁磁耦合导致的。在一种完全不含血红素的方法中,我们现在报告了Fe-(O)-Cu中间体和的光谱表征和反应性,它们仅在与铜结合的三齿配体中心胺上的一个-CH与-H取代基上有所不同。具有端基过氧化物核心以及铁磁( = 1)耦合的Fe和Cu中心的配合物在苯酚存在下进行氢键介导的O-O键裂解,生成氧合铁(IV)以及交换耦合的铜(II)和PhO部分。相比之下,具有 = 0基态的μ-η:η过氧化物配合物对苯酚没有反应活性。因此,正如对CcO中的血红素Fe-(O)-Cu中间体所提出的,自旋拓扑对O-O键裂解的贡献的影响可以扩展到非血红素化学领域。