Suppr超能文献

分子描述符的选择对通过统计学习方法预测血脑屏障穿透性和非穿透性药物的影响。

Effect of selection of molecular descriptors on the prediction of blood-brain barrier penetrating and nonpenetrating agents by statistical learning methods.

作者信息

Li Hu, Yap Chun Wei, Ung Choong Yong, Xue Ying, Cao Zhi Wei, Chen Yu Zong

机构信息

Bioinformatics and Drug Design Group, Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543, PR China.

出版信息

J Chem Inf Model. 2005 Sep-Oct;45(5):1376-84. doi: 10.1021/ci050135u.

Abstract

The ability or inability of a drug to penetrate into the brain is a key consideration in drug design. Drugs for treating central nervous system (CNS) disorders need to be able to penetrate the blood-brain barrier (BBB). BBB nonpenetration is desirable for non-CNS-targeting drugs to minimize potential CNS-related side effects. Computational methods have been employed for the prediction of BBB-penetrating (BBB+) and -nonpenetrating (BBB-) agents at impressive accuracies of 75-92% and 60-80%, respectively. However, the majority of these studies give a substantially lower BBB- accuracy, and thus overall accuracy, than the BBB+ accuracy. This work examined whether proper selection of molecular descriptors can improve both the BBB- and the overall accuracies of statistical learning methods. The methods tested include logistic regression, linear discriminate analysis, k nearest neighbor, C4.5 decision tree, probabilistic neural network, and support vector machine. Molecular descriptors were selected by using a feature selection method, recursive feature elimination (RFE). Results by using 415 BBB+ and BBB- agents show that RFE substantially improves both the BBB- and the overall accuracy for all of the methods studied. This suggests that statistical learning methods combined with proper feature selection is potentially useful for facilitating a more balanced and improved prediction of BBB+ and BBB- agents.

摘要

一种药物能否穿透血脑屏障是药物设计中的关键考量因素。用于治疗中枢神经系统(CNS)疾病的药物需要能够穿透血脑屏障(BBB)。对于非中枢神经系统靶向药物而言,不穿透血脑屏障是理想的,这样可以将潜在的中枢神经系统相关副作用降至最低。已经采用计算方法来预测能够穿透血脑屏障(BBB+)和不能穿透血脑屏障(BBB-)的药物,其准确率分别达到了令人印象深刻的75-92%和60-80%。然而,这些研究中的大多数给出的BBB-准确率,以及因此得出的总体准确率,都远低于BBB+准确率。这项工作研究了分子描述符的恰当选择是否能够提高统计学习方法在BBB-预测以及总体预测方面的准确率。所测试的方法包括逻辑回归、线性判别分析、k近邻算法、C4.5决策树、概率神经网络和支持向量机。通过使用一种特征选择方法——递归特征消除(RFE)来选择分子描述符。使用415种BBB+和BBB-药物得出的结果表明,RFE显著提高了所研究的所有方法在BBB-预测以及总体预测方面的准确率。这表明,统计学习方法与恰当的特征选择相结合,对于促进对BBB+和BBB-药物进行更平衡且更准确的预测可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验