Suppr超能文献

底物结合对小鼠二氢叶酸还原酶机械稳定性的影响。

Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase.

作者信息

Junker J P, Hell K, Schlierf M, Neupert W, Rief M

机构信息

Physik-Department E22, Technische Universität München, D-85748 Garching, Germany.

出版信息

Biophys J. 2005 Nov;89(5):L46-8. doi: 10.1529/biophysj.105.072066. Epub 2005 Sep 23.

Abstract

We investigated the effect of substrate binding on the mechanical stability of mouse dihydrofolate reductase using single-molecule force spectroscopy by atomic force microscopy. We find that under mechanical forces dihydrofolate reductase unfolds via a metastable intermediate with lifetimes on the millisecond timescale. Based on the measured length increase of approximately 22 nm we suggest a structure for this intermediate with intact substrate binding sites. In the presence of the substrate analog methotrexate and the cofactor NADPH lifetimes of this intermediate are increased by up to a factor of two. Comparing mechanical and thermodynamic stabilization effects of substrate binding suggests mechanical stability is dominated by local interactions within the protein structure. These experiments demonstrate that protein mechanics can be used to probe the substrate binding status of an enzyme.

摘要

我们使用原子力显微镜通过单分子力谱研究了底物结合对小鼠二氢叶酸还原酶机械稳定性的影响。我们发现,在机械力作用下,二氢叶酸还原酶通过一个寿命在毫秒时间尺度上的亚稳中间体展开。基于测量到的约22纳米的长度增加,我们提出了这个具有完整底物结合位点的中间体的结构。在底物类似物甲氨蝶呤和辅因子NADPH存在的情况下,这个中间体的寿命增加了多达两倍。比较底物结合的机械和热力学稳定作用表明,机械稳定性主要由蛋白质结构内的局部相互作用决定。这些实验证明,蛋白质力学可用于探测酶的底物结合状态。

相似文献

1
Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase.
Biophys J. 2005 Nov;89(5):L46-8. doi: 10.1529/biophysj.105.072066. Epub 2005 Sep 23.
2
Ligand binding modulates the mechanical stability of dihydrofolate reductase.
Biophys J. 2005 Nov;89(5):3337-44. doi: 10.1529/biophysj.105.062034. Epub 2005 Aug 12.
3
Fingerprinting DHFR in single-molecule AFM studies.
Biophys J. 2006 Sep 1;91(5):2009-10, discussion 2011-2. doi: 10.1529/biophysj.106.085126. Epub 2006 Jun 16.
4
6
Further studies on the role of water in R67 dihydrofolate reductase.
Biochemistry. 2013 Mar 26;52(12):2118-27. doi: 10.1021/bi301544k. Epub 2013 Mar 14.

引用本文的文献

1
Effects of Ligand Binding on the Energy Landscape of Acyl-CoA-Binding Protein.
Biophys J. 2020 Nov 3;119(9):1821-1832. doi: 10.1016/j.bpj.2020.09.016. Epub 2020 Sep 24.
2
The SecA motor generates mechanical force during protein translocation.
Nat Commun. 2020 Jul 30;11(1):3802. doi: 10.1038/s41467-020-17561-2.
3
Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes.
Front Mol Biosci. 2020 May 19;7:85. doi: 10.3389/fmolb.2020.00085. eCollection 2020.
4
Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol.
J Biol Chem. 2018 Jul 20;293(29):11553-11563. doi: 10.1074/jbc.RA118.003669. Epub 2018 Jun 8.
5
Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10389-94. doi: 10.1073/pnas.1504625112. Epub 2015 Aug 3.
6
Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization.
ACS Nano. 2015;9(4):3996-4005. doi: 10.1021/nn507480v. Epub 2015 Apr 13.
7
Effects of ligand binding on the mechanical properties of ankyrin repeat protein gankyrin.
PLoS Comput Biol. 2013;9(1):e1002864. doi: 10.1371/journal.pcbi.1002864. Epub 2013 Jan 17.
8
Variation in the mechanical unfolding pathway of p53DBD induced by interaction with p53 N-terminal region or DNA.
PLoS One. 2012;7(11):e49003. doi: 10.1371/journal.pone.0049003. Epub 2012 Nov 8.
9
Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria.
Mol Biol Cell. 2012 Nov;23(22):4335-46. doi: 10.1091/mbc.E12-05-0420. Epub 2012 Sep 19.
10
Prying open single GroES ring complexes by force reveals cooperativity across domains.
Biophys J. 2012 Apr 18;102(8):1961-8. doi: 10.1016/j.bpj.2012.03.046.

本文引用的文献

1
Exploring the energy landscape of GFP by single-molecule mechanical experiments.
Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16192-7. doi: 10.1073/pnas.0404549101. Epub 2004 Nov 5.
2
A mechanical unfolding intermediate in an actin-crosslinking protein.
Nat Struct Mol Biol. 2004 Jan;11(1):81-5. doi: 10.1038/nsmb705. Epub 2003 Dec 29.
3
The protein import motor of mitochondria.
Nat Rev Mol Cell Biol. 2002 Aug;3(8):555-65. doi: 10.1038/nrm878.
4
Atomic force microscopy reveals the mechanical design of a modular protein.
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6527-31. doi: 10.1073/pnas.120048697.
5
Mechanical unfolding intermediates in titin modules.
Nature. 1999 Nov 4;402(6757):100-3. doi: 10.1038/47083.
6
Reversible unfolding of individual titin immunoglobulin domains by AFM.
Science. 1997 May 16;276(5315):1109-12. doi: 10.1126/science.276.5315.1109.
8
Folding of dihydrofolate reductase from Escherichia coli.
Biochemistry. 1986 Sep 23;25(19):5445-52. doi: 10.1021/bi00367a015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验