Suppr超能文献

在高分辨率磁共振血管造影中自动检测三维血管树中心线和分支点。

Automatic detection of three-dimensional vascular tree centerlines and bifurcations in high-resolution magnetic resonance angiography.

作者信息

Zhang Ling, Chapman Brian E, Parker Dennis L, Roberts John A, Guo Junyu, Vemuri Prashanthi, Moon Sung M, Noo Frederic

机构信息

Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84108, USA.

出版信息

Invest Radiol. 2005 Oct;40(10):661-71. doi: 10.1097/01.rli.0000178433.32526.e0.

Abstract

OBJECTIVES

We sought to develop a simple and robust algorithm capable of automatically detecting centerlines and bifurcations of a three-dimensional (3D) vascular bed.

MATERIALS AND METHODS

After necessary preprocessing, an appropriate cost function is computed for all vessel voxels and Dijkstra's minimum-cost-path algorithm is implemented. By back tracing all the minimum-cost paths, centerlines and bifurcation are detected. The detected paths are then split into segments between adjacent nodes (bifurcations or vessel end-points) and smoothed by curve fitting.

RESULTS

Application of the algorithm to both simulated 3D vessels and 3D magnetic resonance angiography (MRA) images of an actual intracranial arterial tree produced well-centered vessel skeletons. Quantitative assessment of the algorithm was performed. For the simulated data, the root mean square error for centerline detection is about half a voxel. For the human intracranial MRA data, the sensitivity, positive predictive value (PPV), and accuracy of bifurcation detection were calculated for different cost functions. The best case gave a sensitivity of 91.4%, a PPV of 91.4%, and an RMS error of 1.7 voxels.

CONCLUSIONS

To the extent that imperfections are eliminated from the segmented image, the algorithm is effective and robust in automatic and accurate detection of centerlines and bifurcations. The cost function and algorithm used are demonstrated to be an improvement over similar algorithms in the literature.

摘要

目的

我们试图开发一种简单且强大的算法,能够自动检测三维(3D)血管床的中心线和分支。

材料与方法

经过必要的预处理后,为所有血管体素计算合适的代价函数,并实施迪杰斯特拉最小代价路径算法。通过回溯所有最小代价路径,检测中心线和分支。然后将检测到的路径分割为相邻节点(分支或血管端点)之间的段,并通过曲线拟合进行平滑处理。

结果

将该算法应用于模拟的3D血管以及实际颅内动脉树的3D磁共振血管造影(MRA)图像,均生成了居中良好的血管骨架。对该算法进行了定量评估。对于模拟数据,中心线检测的均方根误差约为半个体素。对于人类颅内MRA数据,针对不同代价函数计算了分支检测的灵敏度、阳性预测值(PPV)和准确性。最佳情况下,灵敏度为91.4%,PPV为91.4%,均方根误差为1.7体素。

结论

在从分割图像中消除缺陷的程度上,该算法在自动且准确地检测中心线和分支方面是有效且强大的。所使用的代价函数和算法被证明是对文献中类似算法的一种改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验