Suppr超能文献

网络共生接触过程的动力学关联和对成理论。

Dynamical correlations and pairwise theory for the symbiotic contact process on networks.

机构信息

Departamento de Estatística, Física e Matemática, CAP, Universidade Federal de São João del Rei, 36420-000 Ouro Branco, Minas Gerais, Brazil.

Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil.

出版信息

Phys Rev E. 2019 Nov;100(5-1):052302. doi: 10.1103/PhysRevE.100.052302.

Abstract

The two-species symbiotic contact process (2SCP) is a stochastic process in which each vertex of a graph may be vacant or host at most one individual of each species. Vertices with both species have a reduced death rate, representing a symbiotic interaction, while the dynamics evolves according to the standard (single species) contact process rules otherwise. We investigate the role of dynamical correlations on the 2SCP on homogeneous and heterogeneous networks using pairwise mean-field theory. This approach is compared with the ordinary one-site theory and stochastic simulations. We show that our approach significantly outperforms the one-site theory. In particular, the stationary state of the 2SCP model on random regular networks is very accurately reproduced by the pairwise mean-field, even for relatively small values of vertex degree, where expressive deviations of the standard mean-field are observed. The pairwise approach is also able to capture the transition points accurately for heterogeneous networks and provides rich phase diagrams with transitions not predicted by the one-site method. Our theoretical results are corroborated by extensive numerical simulations.

摘要

两种共生接触过程(2SCP)是一种随机过程,其中图的每个顶点可能为空位,或者最多容纳每个物种的一个个体。具有两种物种的顶点具有降低的死亡率,代表共生相互作用,而动态根据标准(单物种)接触过程规则否则演变。我们使用成对平均场理论研究了同质和异质网络上 2SCP 的动态相关性的作用。该方法与普通单站点理论和随机模拟进行了比较。我们表明,我们的方法明显优于单站点理论。特别是,即使在顶点度相对较小的情况下,2SCP 模型在随机正则网络上的静态状态也可以通过成对平均场非常准确地再现,而标准平均场的显著偏差被观察到。成对方法也能够准确地捕获异质网络中的相变点,并提供丰富的相图,其中一些相变点是单站点方法无法预测的。我们的理论结果得到了广泛的数值模拟的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3e/7217493/06309800de37/e052302_1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验