Duan L-M, Raussendorf R
FOCUS Center and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120, USA.
Phys Rev Lett. 2005 Aug 19;95(8):080503. doi: 10.1103/PhysRevLett.95.080503. Epub 2005 Aug 17.
With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement.
通过结合量子中继器和簇态方法,我们证明即使所有纠缠量子门仅以任意小的概率(p)成功,也能够构建高效的量子计算。所需的计算开销在(1/p)和(n)上都能高效扩展,其中(n)是计算中的量子比特数。这种方法为一类量子计算实现方案中的噪声对抗提供了一种有效方式,在这类方案中,主要噪声会导致概率性信号错误,其错误概率(1 - p)远远超出任何阈值要求。