Suppr超能文献

基于伪氨基酸组成的模糊K近邻算法预测膜蛋白类型

Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition.

作者信息

Shen Hong-Bin, Yang Jie, Chou Kuo-Chen

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai, China.

出版信息

J Theor Biol. 2006 May 7;240(1):9-13. doi: 10.1016/j.jtbi.2005.08.016. Epub 2005 Sep 28.

Abstract

Cell membranes are vitally important to the life of a cell. Although the basic structure of biological membrane is provided by the lipid bilayer, membrane proteins perform most of the specific functions. Membrane proteins are putatively classified into five different types. Identification of their types is currently an important topic in bioinformatics and proteomics. In this paper, based on the concept of representing protein samples in terms of their pseudo-amino acid composition, the fuzzy K-nearest neighbors (KNN) algorithm has been introduced to predict membrane protein types, and high success rates were observed. It is anticipated that, the current approach, which is based on a branch of fuzzy mathematics and represents a new strategy, may play an important complementary role to the existing methods in this area. The novel approach may also have notable impact on prediction of the other attributes, such as protein structural class, protein subcellular localization, and enzyme family class, among many others.

摘要

细胞膜对细胞的生命至关重要。尽管生物膜的基本结构由脂质双层提供,但膜蛋白执行了大部分特定功能。膜蛋白被假定分为五种不同类型。识别它们的类型是目前生物信息学和蛋白质组学中的一个重要课题。在本文中,基于用伪氨基酸组成来表示蛋白质样本的概念,引入了模糊K近邻(KNN)算法来预测膜蛋白类型,并观察到了较高的成功率。预计,当前基于模糊数学分支且代表一种新策略的方法,可能会在该领域对现有方法起到重要的补充作用。这种新方法也可能对许多其他属性的预测产生显著影响,比如蛋白质结构类别、蛋白质亚细胞定位和酶家族类别等。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验