Suppr超能文献

基于标准的荧光突触小体自动选择与分析。

Automated criteria-based selection and analysis of fluorescent synaptic puncta.

作者信息

Bergsman Jeremy B, Krueger Stefan R, Fitzsimonds Reiko Maki

机构信息

Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar St. SHM B 144, New Haven, CT 06510, USA.

出版信息

J Neurosci Methods. 2006 Apr 15;152(1-2):32-9. doi: 10.1016/j.jneumeth.2005.08.008. Epub 2005 Sep 28.

Abstract

The use of fluorescent probes such as FM 1-43 or synapto-pHluorin to study the dynamic aspects of synaptic function has dramatically increased in recent years. The analysis of such experiments is both labor intensive and subject to potentially significant experimenter bias. For our analysis of fluorescently labeled synapses in cultured hippocampal neurons, we have developed an automated approach to punctum identification and classification. This automatic selection and processing of fluorescently labeled synaptic puncta not only reduces the chance of subjective bias and improves the quality and reproducibility of the analyses, but also greatly increases the number of release sites that can be rapidly analyzed from a given experiment, increasing the signal-to-noise ratio of the data. An important innovation to the automation of analysis is our method for objectively selecting puncta for analysis, particularly important for studying and comparing dynamic functional properties of a large population of individual synapses. The fluorescence change for each individual punctum is automatically scored according to several criteria, allowing objective assessment of the quality of each site. An entirely automated and thus unbiased analysis of fluorescence in the study of synaptic function is critical to providing a comprehensive understanding of the cellular and molecular underpinnings of neurotransmission and plasticity.

摘要

近年来,使用诸如FM 1-43或突触pH荧光蛋白等荧光探针来研究突触功能的动态方面显著增加。此类实验的分析既耗费人力,又可能存在显著的实验者偏差。对于我们对培养的海马神经元中荧光标记突触的分析,我们开发了一种用于斑点识别和分类的自动化方法。这种对荧光标记突触斑点的自动选择和处理不仅减少了主观偏差的可能性,提高了分析的质量和可重复性,而且还大大增加了可以从给定实验中快速分析的释放位点数量,提高了数据的信噪比。分析自动化的一项重要创新是我们客观选择用于分析的斑点的方法,这对于研究和比较大量单个突触的动态功能特性尤为重要。根据几个标准自动对每个单独斑点的荧光变化进行评分,从而可以客观评估每个位点的质量。在突触功能研究中对荧光进行完全自动化且无偏差的分析对于全面理解神经传递和可塑性的细胞和分子基础至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验