Polikov Vadim S, Tresco Patrick A, Reichert William M
Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
J Neurosci Methods. 2005 Oct 15;148(1):1-18. doi: 10.1016/j.jneumeth.2005.08.015. Epub 2005 Sep 27.
Chronically implanted recording electrode arrays linked to prosthetics have the potential to make positive impacts on patients suffering from full or partial paralysis. Such arrays are implanted into the patient's cortical tissue and record extracellular potentials from nearby neurons, allowing the information encoded by the neuronal discharges to control external devices. While such systems perform well during acute recordings, they often fail to function reliably in clinically relevant chronic settings. Available evidence suggests that a major failure mode of electrode arrays is the brain tissue reaction against these implants, making the biocompatibility of implanted electrodes a primary concern in device design. This review presents the biological components and time course of the acute and chronic tissue reaction in brain tissue, analyses the brain tissue response of current electrode systems, and comments on the various material science and bioactive strategies undertaken by electrode designers to enhance electrode performance.
与假肢相连的长期植入式记录电极阵列有可能对完全或部分瘫痪的患者产生积极影响。这种阵列被植入患者的皮质组织中,并记录附近神经元的细胞外电位,从而使神经元放电所编码的信息能够控制外部设备。虽然这种系统在急性记录期间表现良好,但它们在临床相关的慢性环境中往往无法可靠地发挥作用。现有证据表明,电极阵列的一个主要失效模式是脑组织对这些植入物的反应,这使得植入电极的生物相容性成为设备设计中的首要关注点。本文综述了脑组织中急性和慢性组织反应的生物学成分和时间进程,分析了当前电极系统的脑组织反应,并对电极设计者为提高电极性能所采用的各种材料科学和生物活性策略进行了评论。
J Neurosci Methods. 2005-10-15
J Neurosci Methods. 2004-8-30
J Biomater Sci Polym Ed. 2007
Brain Res. 2009-7-28
Acta Biomater. 2017-4-15
Micromachines (Basel). 2025-8-18
Chem Rev. 2025-8-13
ACS Chem Neurosci. 2025-6-18