Arora Karunesh, Beard William A, Wilson Samuel H, Schlick Tamar
Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.
Biochemistry. 2005 Oct 11;44(40):13328-41. doi: 10.1021/bi0507682.
Molecular dynamics simulations of DNA polymerase (pol) beta complexed with different incorrect incoming nucleotides (G x G, G x T, and T x T template base x incoming nucleotide combinations) at the template-primer terminus are analyzed to delineate structure-function relationships for aberrant base pairs in a polymerase active site. Comparisons, made to pol beta structure and motions in the presence of a correct base pair, are designed to gain atomically detailed insights into the process of nucleotide selection and discrimination. In the presence of an incorrect incoming nucleotide, alpha-helix N of the thumb subdomain believed to be required for pol beta's catalytic cycling moves toward the open conformation rather than the closed conformation as observed for the correct base pair (G x C) before the chemical reaction. Correspondingly, active-site residues in the microenvironment of the incoming base are in intermediate conformations for non-Watson-Crick pairs. The incorrect incoming nucleotide and the corresponding template residue assume distorted conformations and do not form Watson-Crick bonds. Furthermore, the coordination number and the arrangement of ligands observed around the catalytic and nucleotide binding magnesium ions are mismatch specific. Significantly, the crucial nucleotidyl transferase reaction distance (P(alpha)-O3') for the mismatches between the incoming nucleotide and the primer terminus is not ideally compatible with the chemical reaction of primer extension that follows these conformational changes. Moreover, the extent of active-site distortion can be related to experimentally determined rates of nucleotide misincorporation and to the overall energy barrier associated with polymerase activity. Together, our studies provide structure-function insights into the DNA polymerase-induced constraints (i.e., alpha-helix N conformation, DNA base pair bonding, conformation of protein residues in the vicinity of dNTP, and magnesium ions coordination) during nucleotide discrimination and pol beta-nucleotide interactions specific to each mispair and how they may regulate fidelity. They also lend further support to our recent hypothesis that additional conformational energy barriers are involved following nucleotide binding but prior to the chemical reaction.
对与不同错误进入核苷酸(G×G、G×T和T×T模板碱基×进入核苷酸组合)在模板-引物末端复合的DNA聚合酶(pol)β进行分子动力学模拟,以描绘聚合酶活性位点中异常碱基对的结构-功能关系。与存在正确碱基对时的polβ结构和运动进行比较,旨在获得关于核苷酸选择和识别过程的原子级详细见解。在存在错误进入核苷酸的情况下,拇指亚结构域的α-螺旋N被认为是polβ催化循环所必需的,在化学反应之前,它会朝着开放构象移动,而不是像正确碱基对(G×C)那样朝着闭合构象移动。相应地,进入碱基微环境中的活性位点残基对于非沃森-克里克碱基对处于中间构象。错误进入的核苷酸和相应的模板残基呈现扭曲构象,不形成沃森-克里克键。此外,在催化和核苷酸结合镁离子周围观察到的配体的配位数和排列是错配特异性的。重要的是,进入核苷酸与引物末端之间错配的关键核苷酸转移酶反应距离(P(α)-O3')与这些构象变化之后的引物延伸化学反应并不理想匹配。此外,活性位点的扭曲程度可能与实验确定的核苷酸错误掺入速率以及与聚合酶活性相关的整体能量屏障有关。总之,我们的研究提供了关于DNA聚合酶在核苷酸识别过程中诱导的限制(即α-螺旋N构象、DNA碱基对结合、dNTP附近蛋白质残基的构象以及镁离子配位)以及特定于每个错配的polβ-核苷酸相互作用的结构-功能见解,以及它们如何调节保真度。它们还进一步支持了我们最近的假设,即在核苷酸结合之后但在化学反应之前涉及额外的构象能量屏障。