Narayanan Chitra, Bernard David N, Doucet Nicolas
INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada (C.N.).
INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada (C.N.); PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, Québec, QC G1V 0A6, Canada; GRASP, the Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
Catalysts. 2016 Jun;6(6). doi: 10.3390/catal6060081. Epub 2016 May 27.
It is now common knowledge that enzymes are mobile entities relying on complex atomic-scale dynamics and coordinated conformational events for proper ligand recognition and catalysis. However, the exact role of protein dynamics in enzyme function remains either poorly understood or difficult to interpret. This mini-review intends to reconcile biophysical observations and biological significance by first describing a number of common experimental and computational methodologies employed to characterize atomic-scale residue motions on various timescales in enzymes, and second by illustrating how the knowledge of these motions can be used to describe the functional behavior of enzymes and even act upon it. Two biologically relevant examples will be highlighted, namely the HIV-1 protease and DNA polymerase β enzyme systems.
如今,酶是依赖复杂的原子尺度动力学和协调的构象事件来进行适当的配体识别和催化的动态实体,这已是常识。然而,蛋白质动力学在酶功能中的具体作用仍要么理解不足,要么难以解释。本微型综述旨在通过首先描述一些用于表征酶中不同时间尺度上原子尺度残基运动的常见实验和计算方法,其次说明如何利用这些运动的知识来描述酶的功能行为甚至对其进行调控,从而协调生物物理观察结果与生物学意义。将重点介绍两个与生物学相关的例子,即HIV-1蛋白酶和DNA聚合酶β酶系统。