Jensen Michael A, Davis Ronald W
Stanford Genome Technology Center, Department of Biochemistry , Stanford University , Palo Alto , California 94304 , United States.
Department of Genetics , Stanford University , Palo Alto , California 94304 , United States.
Biochemistry. 2018 Mar 27;57(12):1821-1832. doi: 10.1021/acs.biochem.7b00937. Epub 2018 Mar 13.
There is a growing demand for sustainable methods in research and development, where instead of hazardous chemicals, an aqueous medium is chosen to perform biological reactions. In this Perspective, we examine the history and current methodology of using enzymes to generate artificial single-stranded DNA. By using traditional solid-phase phosphoramidite chemistry as a metric, we also explore criteria for the method of template-independent enzymatic oligonucleotide synthesis (TiEOS). As its key component, we delve into the biology of one of the most enigmatic enzymes, terminal deoxynucleotidyl transferase (TdT). As TdT is found to exponentially increase antigen receptor diversity in the vertebrate immune system by adding nucleotides in a template-free manner, researchers have exploited this function as an alternative to the phosphoramidite synthesis method. Though TdT is currently the preferred enzyme for TiEOS, its random nucleotide incorporation presents a barrier in synthesis automation. Taking a closer look at the TiEOS cycle, particularly the coupling step, we find it is comprised of additions > n+1 and deletions. By tapping into the physical and biochemical properties of TdT, we strive to further elucidate its mercurial behavior and offer ways to better optimize TiEOS for production-grade oligonucleotide synthesis.
在研发领域,对可持续方法的需求日益增长,即在进行生物反应时,选择水性介质而非有害化学物质。在这篇观点文章中,我们审视了使用酶生成人工单链DNA的历史和当前方法。通过将传统的固相亚磷酰胺化学作为衡量标准,我们还探讨了与模板无关的酶促寡核苷酸合成(TiEOS)方法的标准。作为其关键组成部分,我们深入研究了最神秘的酶之一——末端脱氧核苷酸转移酶(TdT)的生物学特性。由于发现TdT通过以无模板方式添加核苷酸,在脊椎动物免疫系统中呈指数级增加抗原受体多样性,研究人员已将此功能用作亚磷酰胺合成方法的替代方案。尽管TdT目前是TiEOS的首选酶,但其随机核苷酸掺入在合成自动化方面构成了障碍。更仔细地观察TiEOS循环,特别是偶联步骤,我们发现它由大于n + 1的添加和缺失组成。通过利用TdT的物理和生化特性,我们努力进一步阐明其多变行为,并提供更好地优化TiEOS以用于生产级寡核苷酸合成的方法。