Reihl Petra, Stolz Jürgen
Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93040, Germany.
J Biol Chem. 2005 Dec 2;280(48):39809-17. doi: 10.1074/jbc.M505002200. Epub 2005 Oct 4.
Riboflavin is a water-soluble vitamin (vitamin B2) required for the production of the flavin cofactors FMN and FAD. Mammals are unable to synthesize riboflavin and need a dietary supply of the vitamin. Riboflavin transport proteins operating in the plasma membrane thus have an important role in the absorption of the vitamin. However, their sequences remained elusive, and not a single eukaryotic riboflavin transporter is known to date. Here we used a genetic approach to isolate MCH5, a Saccharomyces cerevisiae gene with homology to mammalian monocarboxylate transporters, and characterize the protein as a plasma membrane transporter for riboflavin. This conclusion is based on the suppression of riboflavin biosynthetic mutants (rib mutants) by overexpression of MCH5 and by synthetic growth defects caused by deletion of MCH5 in rib mutants. We also show that cellular processes in multiple compartments are affected by deletion of MCH5 and localize the protein to the plasma membrane. Transport experiments in S. cerevisiae and Schizosaccharomyces pombe cells demonstrate that Mch5p is a high affinity transporter (Km = 17 microM) with a pH optimum at pH 7.5. Riboflavin uptake is not inhibited by protonophores, does not require metabolic energy, and operates by a facilitated diffusion mechanism. The expression of MCH5 is regulated by the cellular riboflavin content. This indicates that S. cerevisiae has a mechanism to sense riboflavin and avert riboflavin deficiency by increasing the expression of the plasma membrane transporter MCH5. Moreover, the other members of the MCH gene family appear to have unrelated functions.
核黄素是一种水溶性维生素(维生素B2),是生成黄素辅因子FMN和FAD所必需的。哺乳动物无法合成核黄素,需要从饮食中获取该维生素。因此,在质膜中起作用的核黄素转运蛋白在维生素的吸收中具有重要作用。然而,它们的序列仍然不清楚,迄今为止还没有已知的真核核黄素转运蛋白。在这里,我们采用遗传学方法分离出MCH5,这是一种与哺乳动物单羧酸转运蛋白具有同源性的酿酒酵母基因,并将该蛋白鉴定为核黄素的质膜转运蛋白。这一结论基于以下几点:通过MCH5的过表达对核黄素生物合成突变体(rib突变体)的抑制作用,以及rib突变体中MCH5缺失导致的合成生长缺陷。我们还表明,多个区室中的细胞过程受到MCH5缺失的影响,并将该蛋白定位到质膜。在酿酒酵母和粟酒裂殖酵母细胞中的转运实验表明,Mch5p是一种高亲和力转运蛋白(Km = 17 microM),最适pH为7.5。核黄素的摄取不受质子载体的抑制,不需要代谢能量,通过易化扩散机制进行。MCH5的表达受细胞内核黄素含量的调节。这表明酿酒酵母有一种机制来感知核黄素,并通过增加质膜转运蛋白MCH5的表达来避免核黄素缺乏。此外,MCH基因家族的其他成员似乎具有不相关的功能。