Suppr超能文献

脯氨酸依赖性转录因子Put3调节酿酒酵母中核黄素转运蛋白MCH5的表达。

The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae.

作者信息

Spitzner Andrea, Perzlmaier Angelika F, Geillinger Kerstin E, Reihl Petra, Stolz Jürgen

机构信息

Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany.

出版信息

Genetics. 2008 Dec;180(4):2007-17. doi: 10.1534/genetics.108.094458. Epub 2008 Oct 20.

Abstract

Like most microorganisms, the yeast Saccharomyces cerevisiae is prototrophic for riboflavin (vitamin B2). Riboflavin auxotrophic mutants with deletions in any of the RIB genes frequently segregate colonies with improved growth. We demonstrate by reporter assays and Western blots that these suppressor mutants overexpress the plasma-membrane riboflavin transporter MCH5. Frequently, this overexpression is mediated by the transcription factor Put3, which also regulates the proline catabolic genes PUT1 and PUT2. The increased expression of MCH5 may increase the concentrations of FAD, which is the coenzyme required for the activity of proline oxidase, encoded by PUT1. Thus, Put3 regulates proline oxidase activity by synchronizing the biosynthesis of the apoenzyme and the coenzyme FAD. Put3 is known to bind to the promoters of PUT1 and PUT2 constitutively, and we demonstrate by gel-shift assays that it also binds to the promoter of MCH5. Put3-mediated transcriptional activation requires proline as an inducer. We find that the increased activity of Put3 in one of the suppressor mutants is caused by increased intracellular levels of proline. Alternative PUT3-dependent and -independent mechanisms might operate in other suppressed strains.

摘要

与大多数微生物一样,酿酒酵母对核黄素(维生素B2)是原养型的。在任何一个RIB基因中存在缺失的核黄素营养缺陷型突变体经常分离出具有改善生长的菌落。我们通过报告基因检测和蛋白质免疫印迹证明,这些抑制突变体过表达质膜核黄素转运蛋白MCH5。通常,这种过表达由转录因子Put3介导,Put3也调节脯氨酸分解代谢基因PUT1和PUT2。MCH5表达的增加可能会增加FAD的浓度,FAD是PUT1编码的脯氨酸氧化酶活性所需的辅酶。因此,Put3通过同步脱辅酶和辅酶FAD的生物合成来调节脯氨酸氧化酶活性。已知Put3组成性地结合PUT1和PUT2的启动子,并且我们通过凝胶迁移实验证明它也结合MCH5的启动子。Put3介导的转录激活需要脯氨酸作为诱导剂。我们发现其中一个抑制突变体中Put3活性的增加是由细胞内脯氨酸水平的增加引起的。其他受抑制菌株可能存在PUT3依赖性和非依赖性的替代机制。

相似文献

2
The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae.
J Biol Chem. 2005 Dec 2;280(48):39809-17. doi: 10.1074/jbc.M505002200. Epub 2005 Oct 4.
4
5
Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
Mol Cell Biol. 1995 Apr;15(4):2321-30. doi: 10.1128/MCB.15.4.2321.
6
7
Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1.
Mol Genet Genomics. 2002 Jan;266(5):838-47. doi: 10.1007/s00438-001-0604-y. Epub 2001 Nov 7.
9
Gal11p dosage-compensates transcriptional activator deletions via Taf14p.
J Mol Biol. 2007 Nov 16;374(1):9-23. doi: 10.1016/j.jmb.2007.09.013. Epub 2007 Sep 11.
10
DNA-bound Bas1 recruits Pho2 to activate ADE genes in Saccharomyces cerevisiae.
Eukaryot Cell. 2005 Oct;4(10):1725-35. doi: 10.1128/EC.4.10.1725-1735.2005.

引用本文的文献

1
Rewiring metabolism for optimised Taxol® precursors production.
Metab Eng Commun. 2023 Nov 15;18:e00229. doi: 10.1016/j.mec.2023.e00229. eCollection 2024 Jun.
3
Chemical Constituents and Molecular Mechanism of the Yellow Phenotype of Yellow Mushroom ().
J Fungi (Basel). 2022 Mar 18;8(3):314. doi: 10.3390/jof8030314.
5
Put3 Positively Regulates Proline Utilization in .
mSphere. 2017 Dec 13;2(6). doi: 10.1128/mSphere.00354-17. eCollection 2017 Nov-Dec.
6
A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis.
Biochem J. 2015 Feb 15;466(1):137-45. doi: 10.1042/BJ20141237.
7
The flavoproteome of the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2014 Mar;1844(3):535-44. doi: 10.1016/j.bbapap.2013.12.015. Epub 2013 Dec 27.
8
L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics during nutrient stress as alternative mitochondrial fuel.
World J Microbiol Biotechnol. 2014 Jan;30(1):19-31. doi: 10.1007/s11274-013-1415-0. Epub 2013 Jul 4.

本文引用的文献

1
Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1.
Am J Physiol Cell Physiol. 2008 Sep;295(3):C632-41. doi: 10.1152/ajpcell.00019.2008. Epub 2008 Jul 16.
2
Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum.
J Bacteriol. 2007 Oct;189(20):7367-75. doi: 10.1128/JB.00590-07. Epub 2007 Aug 10.
3
Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters.
Arch Microbiol. 2007 Oct;188(4):377-87. doi: 10.1007/s00203-007-0258-1. Epub 2007 Jun 1.
5
Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
FEMS Yeast Res. 2007 Jun;7(4):604-20. doi: 10.1111/j.1567-1364.2007.00220.x. Epub 2007 Apr 10.
6
Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Apr;27(8):3065-86. doi: 10.1128/MCB.01084-06. Epub 2007 Feb 16.
9
The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae.
J Biol Chem. 2005 Dec 2;280(48):39809-17. doi: 10.1074/jbc.M505002200. Epub 2005 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验