Wilson Alan E, Sarnelle Orlando, Neilan Brett A, Salmon Tim P, Gehringer Michelle M, Hay Mark E
School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
Appl Environ Microbiol. 2005 Oct;71(10):6126-33. doi: 10.1128/AEM.71.10.6126-6133.2005.
To measure genetic variation within and among populations of the bloom-forming cyanobacterium Microcystis aeruginosa, we surveyed a suite of lakes in the southern peninsula of Michigan that vary in productivity (total phosphorus concentrations of approximately 10 to 100 microg liter(-1)). Survival of M. aeruginosa isolates from lakes was relatively low (i.e., mean of 7% and maximum of 30%) and positively related to lake total phosphorus concentration (P = 0.014, r2 = 0.407, n = 14). In another study (D. F. Raikow, O. Sarnelle, A. E. Wilson, and S. K. Hamilton, Limnol. Oceanogr. 49:482-487, 2004), survival rates of M. aeruginosa isolates collected from an oligotrophic lake (total phosphorus of approximately 10 mug liter(-1) and dissolved inorganic nitrogen:total phosphorus ratio of 12.75) differed among five different medium types (G test, P of <0.001), with higher survival (P = 0.003) in low-nutrient media (28 to 37% survival) than in high-nutrient media. Even with the relatively low isolate survivorship that could select against detecting the full range of genetic variation, populations of M. aeruginosa were genetically diverse within and among lakes (by analysis of molecular variance, Phi(sc) = 0.412 [Phi(sc) is an F-statistic derivative which evaluates the correlation of haplotypic diversity within populations relative to the haplotypic diversity among all sampled populations], P = 0.001), with most clones being distantly related to clones collected from lakes directly attached to Lake Michigan (a Laurentian Great Lake) and culture collection strains collected from Canada, Scotland, and South Africa. Ninety-one percent of the 53 genetically unique M. aeruginosa clones contained the microcystin toxin gene (mcyA). Genotypes with the toxin gene were found in all lakes, while four lakes harbored both genotypes possessing and genotypes lacking the toxin gene.
为了测量形成水华的铜绿微囊藻种群内部和种群之间的遗传变异,我们对密歇根州南部半岛一系列生产力不同(总磷浓度约为10至100微克/升)的湖泊进行了调查。从湖泊中分离出的铜绿微囊藻的存活率相对较低(即平均为7%,最高为30%),且与湖泊总磷浓度呈正相关(P = 0.014,r2 = 0.407,n = 14)。在另一项研究中(D. F. 莱科夫、O. 萨内尔、A. E. 威尔逊和S. K. 汉密尔顿,《湖沼学与海洋学》49:482 - 487,2004),从一个贫营养湖泊(总磷约为10微克/升,溶解无机氮与总磷的比率为12.75)收集的铜绿微囊藻分离株在五种不同培养基类型中的存活率存在差异(G检验,P < 0.001),在低营养培养基中的存活率(28%至37%)高于高营养培养基(P = 0.003)。即使分离株存活率相对较低,可能不利于检测到全部的遗传变异,但铜绿微囊藻种群在湖泊内部和湖泊之间仍具有遗传多样性(通过分子方差分析,Phi(sc) = 0.412 [Phi(sc)是一个F统计量导数,用于评估种群内单倍型多样性相对于所有采样种群间单倍型多样性的相关性],P = 0.001),大多数克隆与从直接连接密歇根湖(一个大湖)的湖泊收集的克隆以及从加拿大、苏格兰和南非收集的培养菌株关系较远。53个遗传独特的铜绿微囊藻克隆中有91%含有微囊藻毒素基因(mcyA)。所有湖泊中都发现了带有毒素基因的基因型,而有四个湖泊同时存在带有毒素基因和缺乏毒素基因的基因型。