Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building 3328, La Jolla, CA 92093, USA.
Chembiochem. 2023 Sep 15;24(18):e202300454. doi: 10.1002/cbic.202300454. Epub 2023 Aug 16.
Combinations of biological macromolecules can provide researchers with precise control and unique methods for regulating, studying, and manipulating cellular processes. For instance, combining the unmatched encodability afforded by nucleic acids with the diverse functionality of proteins has transformed our approach to solving several problems in chemical biology. Despite these benefits, there remains a need for new methods to site-specifically generate conjugates between different classes of biomolecules. Here we present a fully enzymatic strategy for combining nucleic acids and proteins using SNAP-tag and RNA-TAG (transglycosylation at guanosine) technologies via a bifunctional preQ1-benzylguanine small molecule probe. We demonstrate the robust ability of this technology to assemble site-specific SNAP-tag - RNA conjugates with RNAs of varying length and use our conjugation strategy to recruit an endonuclease to an RNA of interest for targeted degradation. We foresee that combining SNAP-tag and RNA-TAG will facilitate researchers to predictably engineer novel macromolecular complexes.
生物大分子的组合可以为研究人员提供精确的控制和独特的方法来调节、研究和操纵细胞过程。例如,将核酸提供的无与伦比的编码能力与蛋白质的多样化功能相结合,改变了我们解决化学生物学中几个问题的方法。尽管有这些好处,但仍然需要新的方法来在不同类别的生物分子之间进行特异性地生成缀合物。在这里,我们提出了一种使用 SNAP 标签和 RNA-TAG(鸟苷的转糖基化)技术通过双功能前 Q1-苯甲基鸟嘌呤小分子探针结合核酸和蛋白质的全酶策略。我们证明了该技术具有强大的能力,可以将具有不同长度的 RNA 的特异性 SNAP 标签 - RNA 缀合物组装在一起,并使用我们的缀合策略将内切核酸酶招募到感兴趣的 RNA 上进行靶向降解。我们预计,将 SNAP 标签和 RNA-TAG 结合使用将使研究人员能够可预测地设计新型的大分子复合物。