Song Qun, Kasabov Nikola, Ma Tianmin, Marshall Mark Roger
Knowledge Engineering & Discovery Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1020, New Zealand.
Artif Intell Med. 2006 Mar;36(3):235-44. doi: 10.1016/j.artmed.2005.07.007. Epub 2005 Oct 6.
In many medical areas, there exist different regression formulas to predict/evaluate a medical outcome on the same problem, each of them being efficient only in a particular sub-space of the problem space. The paper aims at the development of a generic, incremental learning model that includes all available regression formulas for a particular prediction problem to define local areas of the problem space with their best performing formula along with useful explanation rules. Another objective of the paper is to develop a specific model for renal function evaluation using nine existing formulas.
We have used a connectionist neuro-fuzzy approach and have developed a knowledge-based neural network model (KBNN) which incorporates and adapts incrementally several existing regression formulas and kernel functions. The model incorporates different non-linear regression functions as neurons in its hidden layer and adapts these functions through incremental learning from data in particular local areas of the space. More specifically, each hidden neural node has a pair of functions associated with it--one regression formula, that represents existing knowledge and one Gaussian kernel function, that defines the sub-space of the whole problem space, in which the formula is locally adapted to new data. All these functions are aggregated and changed through incremental learning. The proposed KBNN model is illustrated using a medical dataset of observed patient glomerular filtration rate (GFR) measurements for renal function evaluation. In this case study, the regression function for each cluster is selected by the model from nine formulas commonly used by medical practitioners to predict GFR. 441 GFR data vectors from 141 patients taken from 12 sites in Australia and New Zealand have been used as a case study experimental data set.
The proposed GFR prediction model, based on the proposed generic KBNN model, outperforms at least by 10% accuracy any of the individual regression formulas or a standard neural network model. Furthermore, we have derived locally adapted regression formulas to perform best on local clusters of data along with useful explanatory rules.
The proposed KBNN model manifests better accuracy then existing regression formulas or neural network models for renal function evaluation and extracts modified formulas that perform well in local areas of the problem space.
在许多医学领域,针对同一问题存在不同的回归公式来预测/评估医学结果,每个公式仅在问题空间的特定子空间中有效。本文旨在开发一种通用的增量学习模型,该模型包含针对特定预测问题的所有可用回归公式,以定义问题空间的局部区域及其性能最佳的公式以及有用的解释规则。本文的另一个目标是使用九个现有公式开发一个用于肾功能评估的特定模型。
我们使用了一种连接主义神经模糊方法,并开发了一种基于知识的神经网络模型(KBNN),该模型逐步纳入并调整了几个现有的回归公式和核函数。该模型在其隐藏层中纳入不同的非线性回归函数作为神经元,并通过从空间中特定局部区域的数据进行增量学习来调整这些函数。更具体地说,每个隐藏神经节点都有一对与之相关的函数——一个回归公式,代表现有知识;一个高斯核函数,定义整个问题空间的子空间,在该子空间中公式局部适应新数据。所有这些函数通过增量学习进行汇总和更改。使用观察到的患者肾小球滤过率(GFR)测量的医学数据集对所提出的KBNN模型进行说明,以评估肾功能。在这个案例研究中,可以从九个医学从业者常用的预测GFR的公式中选择每个聚类的回归函数。来自澳大利亚和新西兰12个地点的141名患者的441个GFR数据向量已用作案例研究实验数据集。
基于所提出的通用KBNN模型的所提出的GFR预测模型,在准确率上至少比任何单个回归公式或标准神经网络模型高出10%。此外,我们已经推导了在局部数据聚类上表现最佳的局部适应回归公式以及有用的解释规则。
所提出的KBNN模型在肾功能评估方面比现有回归公式或神经网络模型表现出更高的准确率,并提取了在问题空间局部区域表现良好的修正公式。