Suppr超能文献

在病例对照研究中使用一种新的吸烟剂量指标对肺癌风险进行建模。

Modeling lung cancer risk in case-control studies using a new dose metric of smoking.

作者信息

Thurston Sally W, Liu Geoffrey, Miller David P, Christiani David C

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2005 Oct;14(10):2296-302. doi: 10.1158/1055-9965.EPI-04-0393.

Abstract

Many approaches have been taken to adjust for smoking in modeling cancer risk. In case-control studies, these metrics are often used arbitrarily rather than being based on the properties of the metric in the context of the study. Depending on the underlying study design, hypotheses, and base population, different metrics may be deemed most appropriate. We present our approach to evaluating different smoking metrics. We examine the properties of a new metric, "logcig-years", that we initially derived from using a biological model of DNA adduct formation. We compare this metric to three other smoking metrics, namely pack-years, square-root pack-years, and a model in which smoking duration and intensity are separate variables. Our comparisons use generalized additive models and logistic regression to examine the relationship between the logit probability of cancer and each of the metrics, adjusting for other covariates. All models were fit using data from a lung cancer study of 1,275 cases and 1,269 controls that has focused on gene-smoking relationships. There was a very significant, linear relationship between logcig-years and the logit probability of lung cancer in this sample, without any need to adjust for smoking status. These properties together were not shared by the other metrics. In this sample, logcig-years captured more information about smoking that is important in lung cancer risk than the other metrics. In conclusion, we provide a general framework for evaluating different smoking metrics in studies where smoking is a critical variable.

摘要

在对癌症风险进行建模时,人们采用了多种方法来调整吸烟因素。在病例对照研究中,这些指标的使用往往比较随意,而非基于研究背景下指标的特性。根据基础研究设计、假设和基础人群的不同,不同的指标可能被认为是最合适的。我们展示了评估不同吸烟指标的方法。我们研究了一种新指标“logcig-years”的特性,该指标最初是通过使用DNA加合物形成的生物学模型推导出来的。我们将这个指标与其他三个吸烟指标进行比较,即包年数、平方根包年数,以及一个将吸烟持续时间和强度作为独立变量的模型。我们的比较使用广义相加模型和逻辑回归来检验癌症的对数概率与每个指标之间的关系,并对其他协变量进行调整。所有模型均使用来自一项针对1275例病例和1269例对照的肺癌研究数据进行拟合,该研究聚焦于基因与吸烟的关系。在这个样本中,logcig-years与肺癌的对数概率之间存在非常显著的线性关系,无需对吸烟状况进行调整。其他指标并不具备这些共同特性。在这个样本中,logcig-years比其他指标捕捉到了更多与肺癌风险相关的吸烟信息。总之,我们提供了一个通用框架,用于在吸烟是关键变量的研究中评估不同的吸烟指标。

相似文献

9
Cigarette smoking and lung cancer: modeling total exposure and intensity.吸烟与肺癌:对总暴露量和强度进行建模
Cancer Epidemiol Biomarkers Prev. 2006 Mar;15(3):517-23. doi: 10.1158/1055-9965.EPI-05-0863.

引用本文的文献

本文引用的文献

6
Variations in lung cancer risk among smokers.吸烟者患肺癌风险的差异。
J Natl Cancer Inst. 2003 Mar 19;95(6):470-8. doi: 10.1093/jnci/95.6.470.
8
DNA adduct burden and tobacco carcinogenesis.DNA加合物负荷与烟草致癌作用
Oncogene. 2002 Oct 21;21(48):7376-91. doi: 10.1038/sj.onc.1205799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验