Suppr超能文献

基于贝叶斯系统发育基因组学的蛋白质分子功能预测

Protein molecular function prediction by Bayesian phylogenomics.

作者信息

Engelhardt Barbara E, Jordan Michael I, Muratore Kathryn E, Brenner Steven E

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, United States of America.

出版信息

PLoS Comput Biol. 2005 Oct;1(5):e45. doi: 10.1371/journal.pcbi.0010045. Epub 2005 Oct 7.

Abstract

We present a statistical graphical model to infer specific molecular function for unannotated protein sequences using homology. Based on phylogenomic principles, SIFTER (Statistical Inference of Function Through Evolutionary Relationships) accurately predicts molecular function for members of a protein family given a reconciled phylogeny and available function annotations, even when the data are sparse or noisy. Our method produced specific and consistent molecular function predictions across 100 Pfam families in comparison to the Gene Ontology annotation database, BLAST, GOtcha, and Orthostrapper. We performed a more detailed exploration of functional predictions on the adenosine-5'-monophosphate/adenosine deaminase family and the lactate/malate dehydrogenase family, in the former case comparing the predictions against a gold standard set of published functional characterizations. Given function annotations for 3% of the proteins in the deaminase family, SIFTER achieves 96% accuracy in predicting molecular function for experimentally characterized proteins as reported in the literature. The accuracy of SIFTER on this dataset is a significant improvement over other currently available methods such as BLAST (75%), GeneQuiz (64%), GOtcha (89%), and Orthostrapper (11%). We also experimentally characterized the adenosine deaminase from Plasmodium falciparum, confirming SIFTER's prediction. The results illustrate the predictive power of exploiting a statistical model of function evolution in phylogenomic problems. A software implementation of SIFTER is available from the authors.

摘要

我们提出了一种统计图形模型,用于利用同源性推断未注释蛋白质序列的特定分子功能。基于系统发育基因组学原理,SIFTER(通过进化关系进行功能的统计推断)在给定协调的系统发育和可用功能注释的情况下,能够准确预测蛋白质家族成员的分子功能,即使数据稀疏或有噪声。与基因本体注释数据库、BLAST、GOtcha和Orthostrapper相比,我们的方法在100个Pfam家族中产生了特定且一致的分子功能预测。我们对腺苷-5'-单磷酸/腺苷脱氨酶家族和乳酸/苹果酸脱氢酶家族的功能预测进行了更详细的探索,在前一种情况下,将预测结果与一组已发表的功能特征的黄金标准进行比较。对于脱氨酶家族中3%的蛋白质给出功能注释的情况下,SIFTER在预测文献中报道的实验表征蛋白质的分子功能方面达到了96%的准确率。SIFTER在该数据集上的准确率比其他现有方法(如BLAST(75%)、GeneQuiz(64%)、GOtcha(89%)和Orthostrapper(11%))有显著提高。我们还对恶性疟原虫的腺苷脱氨酶进行了实验表征,证实了SIFTER的预测。结果说明了在系统发育基因组学问题中利用功能进化统计模型的预测能力。作者提供了SIFTER的软件实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6390/1274288/eb65a3fca120/pcbi.0010045.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验