Suppr超能文献

配对比较和排序数据的结构方程建模

Structural equation modeling of paired-comparison and ranking data.

作者信息

Maydeu-Olivares Albert, Böckenholt Ulf

机构信息

Faculty of Psychology, University of Barcelona, Barcelona, Spain.

出版信息

Psychol Methods. 2005 Sep;10(3):285-304. doi: 10.1037/1082-989X.10.3.285.

Abstract

L. L. Thurstone's (1927) model provides a powerful framework for modeling individual differences in choice behavior. An overview of Thurstonian models for comparative data is provided, including the classical Case V and Case III models as well as more general choice models with unrestricted and factor-analytic covariance structures. A flow chart summarizes the model selection process. The authors show how to embed these models within a more familiar structural equation modeling (SEM) framework. The different special cases of Thurstone's model can be estimated with a popular SEM statistical package, including factor analysis models for paired comparisons and rankings. Only minor modifications are needed to accommodate both types of data. As a result, complex models for comparative judgments can be both estimated and tested efficiently.

摘要

L. L. 瑟斯顿(1927年)的模型为个体选择行为差异建模提供了一个强大的框架。本文提供了瑟斯顿比较数据模型的概述,包括经典的案例V和案例III模型,以及具有无限制和因子分析协方差结构的更一般的选择模型。一个流程图总结了模型选择过程。作者展示了如何将这些模型嵌入到一个更常见的结构方程建模(SEM)框架中。瑟斯顿模型的不同特殊情况可以用一个流行的SEM统计软件包进行估计,包括配对比较和排序的因子分析模型。只需进行微小的修改就可以同时处理这两种类型的数据。因此,可以有效地估计和检验复杂的比较判断模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验