Suppr超能文献

对羟基正缬氨酸具有抗性的酿酒酵母突变体过量生产苏氨酸。

Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.

作者信息

Ramos C, Calderon I L

机构信息

Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.

出版信息

Appl Environ Microbiol. 1992 May;58(5):1677-82. doi: 10.1128/aem.58.5.1677-1682.1992.

Abstract

In this work, we isolated and characterized mutants that overproduce threonine from Saccharomyces cerevisiae. The mutants were selected for resistance to the threonine analog alpha-amino-beta-hydroxynorvalerate (hydroxynorvaline), and, of these, the ones able to excrete threonine to the medium were chosen. The mutant strains produce between 15 and 30 times more threonine than the wild type does, and, to a lesser degree, they also accumulate isoleucine. Genetic and biochemical studies have revealed that the threonine overproduction is, in all cases studied, associated with the presence in the strain of a HOM3 allele coding for a mutant aspartate kinase that is totally or partially insensitive to feedback inhibition by threonine. This enzyme seems, therefore, to be crucial in the regulation of threonine biosynthesis in S. cerevisiae. The results obtained suggest that this strategy could be efficiently applied to the isolation of threonine-overproducing strains of yeasts other than S. cerevisiae, even those used industrially.

摘要

在这项工作中,我们从酿酒酵母中分离并鉴定了过量生产苏氨酸的突变体。这些突变体是通过对苏氨酸类似物α-氨基-β-羟基正缬氨酸(羟基正缬氨酸)的抗性筛选出来的,其中,能够向培养基中分泌苏氨酸的突变体被挑选出来。突变菌株产生的苏氨酸比野生型多15至30倍,并且在较小程度上,它们还积累异亮氨酸。遗传和生化研究表明,在所研究的所有情况下,苏氨酸的过量生产都与菌株中存在编码对苏氨酸反馈抑制完全或部分不敏感的突变天冬氨酸激酶的HOM3等位基因有关。因此,这种酶似乎在酿酒酵母中苏氨酸生物合成的调节中起关键作用。所获得的结果表明,该策略可以有效地应用于分离除酿酒酵母之外的其他酵母的苏氨酸高产菌株,甚至是工业上使用的酵母菌株。

相似文献

1
Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.
Appl Environ Microbiol. 1992 May;58(5):1677-82. doi: 10.1128/aem.58.5.1677-1682.1992.
4
Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of .
Appl Environ Microbiol. 2024 Apr 17;90(4):e0015524. doi: 10.1128/aem.00155-24. Epub 2024 Mar 8.
5
Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae.
Yeast. 1999 Sep 30;15(13):1331-45. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1331::AID-YEA460>3.0.CO;2-W.
6
Threonine production by regulatory mutants of Serratia marcescens.
Appl Environ Microbiol. 1978 May;35(5):834-40. doi: 10.1128/aem.35.5.834-840.1978.
7
Genetic and biochemical study of threonine-overproducing mutants of Saccharomyces cerevisiae.
Mol Cell Biol. 1982 Jul;2(7):731-6. doi: 10.1128/mcb.2.7.731-736.1982.

引用本文的文献

1
Functional analysis of feedback inhibition-insensitive aspartate kinase identified in a threonine-accumulating mutant of .
Appl Environ Microbiol. 2024 Apr 17;90(4):e0015524. doi: 10.1128/aem.00155-24. Epub 2024 Mar 8.
2
Production of (S)-2-aminobutyric acid and (S)-2-aminobutanol in Saccharomyces cerevisiae.
Microb Cell Fact. 2017 Mar 23;16(1):51. doi: 10.1186/s12934-017-0667-z.
5
Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants.
Eukaryot Cell. 2010 May;9(5):717-28. doi: 10.1128/EC.00044-10. Epub 2010 Mar 19.
6
Threonine biosynthetic genes are essential in Cryptococcus neoformans.
Microbiology (Reading). 2008 Sep;154(Pt 9):2767-2775. doi: 10.1099/mic.0.2008/019729-0.
8
10
Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii.
Appl Environ Microbiol. 1998 Nov;64(11):4283-90. doi: 10.1128/AEM.64.11.4283-4290.1998.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Occurrence of a catabolic L-serine (L-threonine) deaminase in Saccharomyces cerevisiae.
Eur J Biochem. 1982 Apr;123(3):571-6. doi: 10.1111/j.1432-1033.1982.tb06570.x.
3
Genetic map of Saccharomyces cerevisiae.
Microbiol Rev. 1980 Dec;44(4):519-71. doi: 10.1128/mr.44.4.519-571.1980.
4
Genetic and biochemical study of threonine-overproducing mutants of Saccharomyces cerevisiae.
Mol Cell Biol. 1982 Jul;2(7):731-6. doi: 10.1128/mcb.2.7.731-736.1982.
7
Homoserine kinase of Escherichia coli: kinetic mechanism and inhibition by L-aspartate semialdehyde.
Arch Biochem Biophys. 1984 Dec;235(2):359-70. doi: 10.1016/0003-9861(84)90209-1.
10
Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae.
Curr Genet. 1988 Mar;13(3):207-17. doi: 10.1007/BF00387766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验