Gloor Guy J, Jackson George, Blas Felipe J, de Miguel Enrique
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
J Chem Phys. 2005 Oct 1;123(13):134703. doi: 10.1063/1.2038827.
A novel test-area (TA) technique for the direct simulation of the interfacial tension of systems interacting through arbitrary intermolecular potentials is presented in this paper. The most commonly used method invokes the mechanical relation for the interfacial tension in terms of the tangential and normal components of the pressure tensor relative to the interface (the relation of Kirkwood and Buff [J. Chem. Phys. 17, 338 (1949)]). For particles interacting through discontinuous intermolecular potentials (e.g., hard-core fluids) this involves the determination of delta functions which are impractical to evaluate, particularly in the case of nonspherical molecules. By contrast we employ a thermodynamic route to determine the surface tension from a free-energy perturbation due to a test change in the surface area. There are important distinctions between our test-area approach and the computation of a free-energy difference of two (or more) systems with different interfacial areas (the method of Bennett [J. Comput. Phys. 22, 245 (1976)]), which can also be used to determine the surface tension. In order to demonstrate the adequacy of the method, the surface tension computed from test-area Monte Carlo (TAMC) simulations are compared with the data obtained with other techniques (e.g., mechanical and free-energy differences) for the vapor-liquid interface of Lennard-Jones and square-well fluids; the latter corresponds to a discontinuous potential which is difficult to treat with standard methods. Our thermodynamic test-area approach offers advantages over existing techniques of computational efficiency, ease of implementation, and generality. The TA method can easily be implemented within either Monte Carlo (TAMC) or molecular-dynamics (TAMD) algorithms for different types of interfaces (vapor-liquid, liquid-liquid, fluid-solid, etc.) of pure systems and mixtures consisting of complex polyatomic molecules.
本文提出了一种新颖的测试区域(TA)技术,用于直接模拟通过任意分子间势相互作用的系统的界面张力。最常用的方法是根据相对于界面的压力张量的切向和法向分量来调用界面张力的力学关系(柯克伍德和巴夫的关系[《化学物理杂志》17, 338 (1949)])。对于通过不连续分子间势相互作用的粒子(例如硬核流体),这涉及到狄拉克δ函数的确定,而这些函数在计算上是不切实际的,特别是在非球形分子的情况下。相比之下,我们采用一种热力学途径,通过表面积的测试变化引起的自由能微扰来确定表面张力。我们的测试区域方法与计算具有不同界面面积的两个(或更多)系统的自由能差(贝内特方法[《计算物理杂志》22, 245 (1976)])之间存在重要区别,后者也可用于确定表面张力。为了证明该方法的适用性,将从测试区域蒙特卡罗(TAMC)模拟计算得到的表面张力与用其他技术(例如力学和自由能差)获得的 Lennard-Jones 和方阱流体气液界面的数据进行了比较;后者对应于一种难以用标准方法处理的不连续势。我们的热力学测试区域方法在计算效率、易于实现和通用性方面比现有技术具有优势。TA 方法可以很容易地在蒙特卡罗(TAMC)或分子动力学(TAMD)算法中实现,用于由复杂多原子分子组成的纯系统和混合物的不同类型界面(气液、液液、流体 - 固体等)。